

Manual

CC-Link IE Field Basic

UNITRONIC ACCESS IO-Link Master

Multi-protocol: MP08IOLA08DIO (8 × IO-Link Class A)

Single-protocol: CCL08IOLA08DIO (8 × IO-Link Class A)

Contents

1 About this manual	8	
1.1 General information 1.2 Explanation of symbols	8	
1.2.1 Use of danger information	9	
1.2.2 Use of general information	9	
1.3 Version information	9	
2 Safety instructions	10	
2.1 Intended use	10	
2.2 Qualified personnel	11	
3 Designations and synonyms	12	
4 System description	16	
4.1 About UNITRONIC® ACCESS	16	
4.2 Device variants	17	
4.3 I/O port overview	19	
5 Overview of product features	21	
5.1 CC-Link IE Field Basic product features	21	
5.2 I/O port features	22	
5.3 Integrated Web server	23	
5.4 Security features	24	
5.5 Other features	25	

6 Assembly and wiring	26
6.1 General information6.2 Outer dimensions	26 27
6.2.1 UNITRONIC [®] ACCESS multi-protocol variants w IE Field Basic	27
6.2.2 UNITRONIC [®] ACCESS single-protocol variants w IE Field Basic	rith CC-Link 28
6.2.3 Notifications	29
6.3 Port assignments	30
6.3.1 Ethernet ports, M12 socket, 4-pin, D-coded	30
6.3.2 Power supply with M12 power L-coded	31
6.3.2.1 IO-Link Master with Class A ports	32
6.3.2.2 IO-Link Master with Class A/B ports	33
6.3.3 I/O ports as M12 sockets	33
6.3.3.1 IO-Link ports (Class A)	34
7 Starting operation	35
7.1 CSP+ file	35
7.2 MAC addresses	35
7.3 State on delivery	36
7.4 Setting the rotary encoding switches	37
7.4.1 CC-Link IE Field Basic	40
7.4.2 Factory reset	40
7.5 Setting network parameters	41
8 Configuration CC-Link IE Field Basic	42
8.1 General settings	43
8.1.1 Force mode lock	44
8.1.2 Web interface lock	44
8.1.3 Report U_L/U_{AUX} supply voltage fault	44

8.1.4 Report actuator fault without U _L /U _{AUX} voltage	44
8.1.5 Report U _S voltage fault	44
8.1.6 External configuration lock	44
8.2 Port configuration X1 X8	45
8.2.1 Port Mode	49
8.2.2 Validation and Backup	49
8.2.3 IQ Mode	53
8.2.4 Cycle Time	53
8.2.5 Vendor ID	54
8.2.6 Device ID	54
8.2.7 IOL Failsafe	54
8.2.8 IOL Failsafe values	55
8.2.9 Swapping Length	55
8.2.10 Swapping Offset	56
8.2.11 Swapping Count	56
8.2.12 Sensor Supply Disabled	56
8.2.13 Suppress all Diagnosis	56
8.2.14 DO Surveillance Timeout	56
8.2.15 DO Failsafe	56
8.2.16 DO Restart Mode	57
8.2.17 DI Logic	57
8.2.18 DI Filter	58
8.2.19 Error LED Disable	58
8.2.20 Level LED Disable	58
8.2.21 Use Push Pull	58
8.2.22 Current Limit	58
8.2.23 DI Latch	58
8.2.24 DI Extension	60
9 Process data assignment	62
9.1 Consuming data (output)	63
9.2 Producing data (input)	64

10 Diagnostics processing	65
10.1 Error of the system/sensor power supply 10.2 Error of the auxiliary/actuator power supply 10.3 Overload/short circuit of the digital outputs	65 66 66
10.4 Overload/short circuit of the actuator power supp	
10.5 Overload/short-circuit of the I/O port sensor supp	-
11 Configuration and opera	tion with
GxWorks3 [®]	70
11.1 Integration of a CSP+ file	70
11.2 Network parameters	7′
11.3 Parameter processing	73
40 HoT franctionality	70
12 IIoT functionality	76
12.1 MQTT	77
12.1.1 MQTT configuration	77
12.1.2 MQTT topics	80
12.1.2.1 Base topic	80
12.1.2.2 Publish topic	83
12.1.2.3 Command topic (MQTT Subscribe)	88
12.1.3 MQTT configuration - Quick start guide	92
12.1.3.1 MQTT configuration via JSON	92
12.2 OPC UA	94
12.2.1 OPC UA configuration	95
12.2.2 OPC UA address space	97
12.2.3 OPC UA configuration - Quick start guide	98
12.2.3.1 OPC UA configuration via JSON 12.3 REST API	98 100
12.3.1 Standard device information	102
12.3.1 Glandard device information	102

12.3.2 Structure	103
12.3.3 Configuration and forcing	109
12.3.4 Reading and writing ISDU parameters	112
12.3.4.1 Reading ISDU	112
12.3.4.2 Writing ISDU	114
12.3.5 Upload and process an IODD file	116
12.3.6 Example: Reading ISDU	120
12.3.7 Example: Writing ISDU	120
12.4 CoAP server	121
12.4.1 CoAP configuration	121
12.4.2 REST API access via CoAP	122
12.4.3 CoAP configuration - Quick start guide	125
12.4.3.1 CoAP configuration via JSON	125
12.5 Syslog	127
12.5.1 Syslog configuration	127
12.5.2 Syslog configuration - Quick start guide	130
12.5.2.1 Syslog configuration via JSON	130
12.6 Network Time Protocol (NTP)	132
12.6.1 NTP configuration	132
12.6.2 NTP configuration - Quick start guide	134
12.6.2.1 NTP configuration via JSON	134
13 The integrated Web server	136
13.1 UNITRONIC® ACCESS MP08 variants	137
13.1.1 The Status page	137
13.1.2 The Ports page	138
13.1.2.1 IODD upload	138
13.1.3 The System page	140
13.1.3.1 License	141
13.1.3.2 Config upload/download	141
13.1.3.3 IODD	144
13.1.3.4 Restart device	145
13.1.3.5 Reset configuration to factory defaults	145
13.1.3.6 Firmware update	145

13.1.3.7 System diagnosis	146
13.1.4 The User page 13.2 UNITRONIC® ACCESS single-protocol PN0/EIP0/EC0/ MTCP0/CCL0 variants	147148
13.2.1 The System page	148
14 IODD 1	150
14.1 IO-Link Device parameters and ISDU requests	150
14.2 Web GUI functionality	151
14.2.1 Port Details page	151
14.2.2 Parameters page	153
14.2.3 IODD Management page	154
15 Technical data	156
15.1 General	157
15.2 CC-Link IE Field Basic protocol	158
15.3 Power supply of the module electronics/sensors	159
15.4 Power supply of the actuators	160
15.4.1 IO-Link Class A devices (U _L)	160
15.4.2 IO-Link Class A/B devices (U _{AUX})	160
15.5 I/O ports Channel A (Pin 4)	161
15.5.1 Configured as digital input, Ch. A (Pin 4)	161
15.5.2 Configured as digital output, Ch. A (Pin 4)	162
15.5.3 Configured as IO-Link port in COM mode, Ch. A	164
15.6 I/O ports Channel B (Pin 2)	165
15.6.1 Configured as a digital input, Ch. B (Pin 2)	165
15.6.2 Configured as a digital output, Ch. B (Pin 2)	166
15.7 LEDs	168
15.8 Data transfer times	171
16 Accessories	173

1 About this manual

1.1 General information

Read the assembly and operating instructions on the following pages carefully before starting up the modules. Keep this information where it is accessible to all users.

The texts, figures, diagrams, and examples used in this document are exclusively used to explain how to operate and apply the modules.

Please contact us if you have any detailed questions on installing and starting up the devices.

U.I. Lapp GmbH

Schulze-Delitzsch-Straße 25 D-70565 Stuttgart Germany

mailto:info@lapp.com https://www.lapp.com

U.I. Lapp GmbH reserves the right to make technical changes or changes to this document at any time without notice.

1.2 Explanation of symbols

1.2.1 Use of danger information

Danger information is denoted as follows:

Danger: Means that death, serious physical injury or substantial damage to property will occur if the required safety measures are not taken.

Warning: Means that death, serious physical injury or substantial damage to property can occur if the required safety measures are not taken.

Caution: Means that minor physical injury or damage to property can occur if the required safety measures are not taken.

1.2.2 Use of general information

General information is denoted as follows:

Attention: Contains important information on the product, on how to manage the product, or on the respective section of the documentation to which your special attention is being drawn.

1.3 Version information

Index	Created	Changes
1.0	10/2024	

Table 1: Overview of manual revisions

2 Safety instructions

2.1 Intended use

The products described in this manual are decentralized IO-Link Masters on an Industrial Ethernet Network.

We adhere to all safety standards when developing, producing, testing, and documenting our products. When you adhere to the handling specifications and safety instructions described for the configuration, assembly, and correct operation, there should not normally be any risks for people or equipment.

The modules fulfill the requirements of the EMC guidelines (2014/30/EU) and the low voltage guideline (2014/35/EU).

The IO-Link Masters are designed to be used in the industrial sector. The industrial environment is distinguished by the fact that the consumer is not connected directly to the public low voltage network. Additional measures are required for use in residential areas or in business and commercial sectors.

Attention: This equipment may cause radio interference in residential areas. In this case the operator may be requested to carry out appropriate measures.

The proper and safe operation of this product depends on proper transportation, storage, assembly, and installation, and careful operation.

A completely assembled device housing is required for the proper operation of the IO-Link Masters. Only connect devices that fulfill the requirements of EN 61558-2-4 and EN 61558-2-6 to the IO-Link Masters.

During the configuration, installation, start-up, maintenance, and testing of the devices, adhere to the safety and accident-prevention guidelines for the specific application.

Only install cables and accessories that fulfill the requirements and regulations for safety, electromagnetic compatibility, and, where applicable, telecommunication end devices, as well as the specification information.

Information on which cables and accessories are permitted for the installation can be obtained from U.I. Lapp GmbH or is contained in this manual.

2.2 Qualified personnel

The configuration, installation, start-up, maintenance, and testing of the devices may only be performed by a qualified electrician who is familiar with the safety standards of the automation technology.

The personnel requirements are based on the requirement profiles described by ZVEI, VDMA, or equivalent organizations.

Only electricians who are familiar with the content of all provided device documentation are authorized to install and maintain the devices described. These are persons who

- ▶ based on their technical training, knowledge, and experience, and their knowledge of the pertinent standards, can evaluate the work to be carried out and identify any potential risks or
- based on working for several years in a related sector, have the same level of knowledge as they would have from the relevant technical training.

Only U.I. Lapp GmbH is permitted to make changes to the hardware or software of the products that go beyond the scope of this manual.

Warning: Making unqualified changes to the hardware or software, or non-adherence to the warning information contained in this document, can result in serious personal injury or damage to equipment.

Attention: U.I. Lapp GmbH accepts no liability for any damage caused by unqualified personnel or improper use. This automatically voids the warranty.

3 Designations and synonyms

AOI	Add-On Instruction	
API	Application Programming Interface	
BF	Bus Fault LED	
Big Endian	Data format with High-B on first place (PROFINET and IO-Link)	
BUI	Back-Up Inconsistency (EIP diagnostics)	
cc	CC-Link IE Field	
C/Q	I/O port pin 4 mode, IO-Link communication/switching signal	
Ch. A	Channel A (Pin 4) of I/O port	
Ch. B	Channel B (Pin 2) of I/O port	
CIP	Common Industrial Protocol (media independent protocol)	
CIP Safety™	Common Industrial Protocol for Safety applications, CIP Safety™ is a registered trademark of ODVA	
Class A	IO-Link port specification (Class A)	
Class B	IO-Link port specification (Class B)	
CoAP	Constrained Application Protocol	
CSP+	Control & Communication System Profile Plus	
DAT	Device Acknowledgement Time	
DCP	Discovery and Configuration Protocol	
DevCom	Device Comunicating (EIP diagnostics)	
DevErr	Device Error (EIP diagnostics)	
DI	Digital Input	
DIA	Diagnostic LED	
DO	Digital Output	
DIO	Digital Input/Output	
DTO	Device Temperature Overrun (EIP diagnostics)	
DTU	Device Temperature Underrun (EIP diagnostics)	
DUT	Device under test	

EIP	EtherNet/IP™ is a registered trademark of ODVA	
ERP	Enterprise Resource Planning system	
ETH	ETHERNET	
FE	Functional Earth	
FME	Force Mode Enabled (EIP diagnostics)	
FS	Functional Safety	
FSU	Fast Start-Up	
GSDML	General Station Description Markup Language	
High-B	High-Byte	
HTTPS	Hyper Text Transfer Protocol Secure	
ICE	IO-Link port COM Error (EIP diagnostics)	
ICT	Invalid Cycle Time (EIP diagnostics)	
IDE	IO-Link port Device Error (EIP diagnostics)	
IDN	IO-Link port Device Notification (EIP diagnostics)	
IDW	IO-Link port Device Warning (EIP diagnostics)	
lloT	Industrial Internet of Things	
ILE	Input process data Length Error (EIP diagnostics)	
IME	Internal Module Error (EIP diagnostics)	
1/0	Input / Output	
I/O port	X1 X8	
I/O port pin 2	Channel B of I/O ports	
I/O port pin 4 (C/Q)	Channel A of I/O ports	
IODD	I/O Device Description	
IOL or IO-L	IO-Link	
I/Q	I/O port pin 2 mode, Digital Input/switching signal	
ISDU	Indexed Service Data Unit	
IVE	IO-Link port Validation Error (EIP diagnostics)	
I&M	Identification & Maintenance	
JSON	JavaScript Object Notation (platform independent data format)	
L+	I/O port pin 1, sensor power supply	

UNITRONIC® ACCESS 60	UNITRONIC® ACCESS variants with a width of 60mm	
Little Endian	Data format with Low-B on first place (EtherNet/IP)	
LLDP	Link Layer Discovery Protocol	
Low-B	Low-Byte	
LSB	Least Significant Bit	
LVA	Low Voltage Actuator Supply (EIP diagnostics)	
LVS	Low Voltage System/Sensor Supply (EIP diagnostics)	
MIB	Management Information Base	
MP	Multi-protocol: PROFINET + EtherNet/IP + EtherCAT® + Modbus TCP (+ CC-Link IE Field Basic)	
MQTT	Message Queuing Telemetry Transport (open networking protocol)	
MSB	Most Significant Bit	
M12	Metric thread according to DIN 13-1 with 12 mm diameter	
NTP	Network Time Protocol	
OFDT	One Fault Delay Time	
OLE	Output process data Length Error (EIP diagnostics)	
OPC UA	Open Platform Communications Unified Architecture (platform independent, service-oriented architecture)	
PFH	Probability of dangerous Failure per Hour [h -1]	
PD	Process Data	
PDCT	Port and Device Configuration Tool	
PLC	Programmable Logic Controller	
PN	PROFINET	
PWR	Power	
Qualifier	Validity on a process value. Valid = "1"	
REST	REpresentational State Transfer	
RFC	Request for Comments	
RPI	Requested Packet Interval	
RWr	Word data input as seen from the master station (CC-Link)	
RWw	Word data output as seen from the master station (CC-Link)	
RX	Bit data input as seen from the master station (CC-Link)	

RY	Bit data output as seen from the master station (CC-Link)		
SCA	Short Circuit Actuator/U _L /U _{AUX} (EIP diagnostics)		
scs	Short Circuit Sensor (EIP diagnostics)		
SFRT	Safety Function Response Time		
SIO mode	Standard Input Output mode		
SLMP	Seamless Message Protocol		
SNMP	Simple Network Management Protocol		
SP	Single Protocol (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP or CC-Link IE Field Basic)		
SPE	Startup Parameterization Error (EIP diagnostics)		
Т-В	Test Channel B		
T-A	Test Channel A		
U _{AUX}	U _{Auxiliary} , supply voltage for the load circuit (Actuator supply on Class B ports of Class A/B IO-Link Master)		
UDP	User Datagram Protocol		
UDT	User-Defined Data Types		
UINT8	Byte in PLC (IB, QB)		
UINT16	Unsigned integer with 16 bits or word in PLC (IW, QW)		
U _L	U _{Load} , supply voltage for the load circuit (Actuator supply on Class A IO-Link-Master)		
UL	Underwriters Laboratories Inc. (certification company)		
UTC	Coordinated Universal Time (Temps Universel Coordonné)		
WCDT	Worst Case Delay Time		

Table 2: Designations and synonyms

4 System description

The Lapp U.I. UNITRONIC® ACCESS modules function as the interface in an industrial Ethernet system: A central controller on the management level is able to communicate with the decentralized sensors and actuators on the field level. The line or ring topologies for which UNITRONIC® modules can be used ensure not only reliable data communication but also significantly reduce the number of cables required and thus also the costs for installation and maintenance. They additionally enable easy and quick extension.

4.1 About UNITRONIC® ACCESS

The UNITRONIC® ACCESS device variants convert standard input, standard output or IO-Link signals from sensors & actuators into an industrial Ethernet protocol (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP, CC-Link IE Field Basic) and/or into a cloud protocol (REST API, CoAP, OPC UA, MQTT). For the first time, there is now Syslog on board. The robust 8 port housing design allows the use even in harsh environments where e.g. weld field immunity, high temperature ranges or protection class IP67 & IP69K are needed.

4.2 Device variants

The following variants are available in the UNITRONIC® ACCESS Multiprotocol and the UNITRONIC® ACCESS single-protocol family:

Article number	Product designation	Description	I/O port functionality
381166717	MP08IOLA08DIO	UNITRONIC® ACCESS M12-60 mm, IO-Link Master Multi-protocol (PN, EIP, EC, MB, CC) Security	8 x IO-Link Class A
381166712	PN08IOLA08DIO	UNITRONIC® ACCESS single-protocol M12-60 mm, IO-Link Master PROFINET	8 x IO-Link Class A
381166713	EIP08IOLA08DIO	UNITRONIC® ACCESS single-protocol M12-60 mm, IO-Link Master EtherNet/IP	8 x IO-Link Class A
381166714	EC08IOLA08DIO	UNITRONIC® ACCESS single-protocol M12-60 mm, IO-Link Master EtherCAT®	8 x IO-Link Class A
381166715	MTCP08IOLA08DIO	UNITRONIC® ACCESS single-protocol M12-60 mm, IO-Link Master Modbus TCP	8 x IO-Link Class A
381166716	CCL08IOLA08DIO	UNITRONIC® ACCESS single-protocol M12-60 mm, IO-Link Master CC-Link IE Field Basic	8 x IO-Link Class A

Table 3: Overview of UNITRONIC® ACCESS Multi-protocol and UNITRONIC® ACCESS single-protocol variants

4.3 I/O port overview

The following tables show the main I/O port differences of the UNITRONIC® ACCESS IO-Link-Master family. Pin 4 and Pin 2 of the I/O ports can be configured partly to IO-Link, Digital Input or Digital Output.

UNITRONIC® ACCESS Class A IO-Link ports

Device variant	Port	Pin 1 U _S	Pin 4 / Ch. A (C/Q)			Pin 2 / Ch. B (I/Q)		
	Info:	-	Class A	Type 1	Supply by U _S ¹⁾	Supply by U _L ²⁾	Type 1	Supply by U _L ²⁾
	X8:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X7:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
MP08	X6:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X5:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X4:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X3:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X2:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X1:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)

Table 4: Port configuration of MP08... variants

¹⁾ DO switch mode configured as "Push-Pull" (description in the configuration chapters).

²⁾ DO switch mode configured as "High-Side" (description in the configuration chapters).

UNITRONIC® ACCESS single-protocol Class A IO-Link ports

Device variant	Port	Pin 1 U _S	Pin 4 / Ch. A (C/Q)			Pin 2 / Ch. B (I/Q)
	Info:	-	Class A	Type 1	Supply by U _S ¹⁾	Туре 1
	X8:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X7:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
PN08IOLA/ EIP08IOLA/	X6:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
EC08IOLA/ MTCP08IOLA	X5:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
CCL08IOLA	X4:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X3:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X2:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X1:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI

Table 5: Port configuration of PN08IOLA.../EIP08IOLA.../EC08IOLA.../
MTCP08IOLA.../CCL08IOLA... variants

¹⁾ With DO Switch Mode configured as "Push-Pull" (see description in the configuration chapters).

^{*} For **UL applications**: Max. 0.25 A DO.

5 Overview of product features

5.1 CC-Link IE Field Basic product features

CC-Link IE Field Basic network

- Number of stations: 4.
- ► RX 64 bits (per station)
- ► RY 64 bits (per station)
- ► RWw 32 words (per station)
- ► RWr 32 words (per station)

Data connection

The connection option provided by UNITRONIC® ACCESS is the widely-used M12 connector with D-coding for the CC-Link IE Field Basic network.

The connectors are also color-coded to prevent the ports from being mixed up.

Data transmission rates

Featuring a transmission rate of up to 100 MBit/s, the CC-Link IE Field Basic devices can handle both fast transmission of I/O data and transmission of larger volumes of data.

Diagnostic data

The devices support diagnosis flags and extended diagnostic data that can be appended to the I/O data.

5.2 I/O port features

IO-Link specification.

UNITRONIC® ACCESS is ready for IO-Link specification v1.1.3.

8 x IO-Link Master ports

Depending on the device variant, the device has 4 IO-Link Class A ports, 4 IO-Link Class A ports and 4 IO-Link Class B ports, or 8 IO-Link Class A ports with an additional digital input and optional output on pin 2 of the I/O port. For detailed information see chapter I/O port overview on page 19.

Warning: If modules with electric isolation and modules without electric isolation are used within the same system, the electric isolation of all connected modules is annulled.

IO-Link port connections

The IO-Link port connection option provided by the module series is the 5-pin M12 connector.

Validation & Backup

The Validation & Backup function checks if the right device is connected and stores / monitors the parameters of the IO-Link Device. The function thus gives you an easy option for replacing the IO-Link Device.

This is possible as of IO-Link specification V1.1 and only if the IO-Link Device and the IO-Link Master support the function.

LED

You can see the status of a port by the color of the matching LEDs and their flash pattern. For details on the meanings of the LED colors, please see section LEDs on page 168.

5.3 Integrated Web server

Network parameter display

Get an overview of network parameters such as the IP address, subnet mask and gateway.

Displaying diagnostics

View diagnostics via the integrated Web server.

User management

Use the integrated Web server for convenient management of all users.

IO-Link Device parameters

Reading and writing of IO-Link Device parameters is supported. The system command Store parameters is needed after parameter writing, to take over the changed parameter into the IO-Link Master backup memory when enabled.

5.4 Security features

Firmware signature

The official firmware update packages contain a signature which helps prevent the system against manipulated firmware updates.

Syslog

The UNITRONIC® ACCESS multi-protocol variants support the traceability of messages centrally managed and logged via Syslog.

User manager

The Web server provides a user manager to help protect the Web interface against unauthorized access. You can manage the users by groups with different access levels "Admin" or "Write".

Default user settings:

User: admin

Password: private

Attention: Change the default settings to help protect the device against unauthorized access.

5.5 Other features

Interface protection

The devices have reverse polarity, short-circuit and overload protection for each interface.

For more details, see section Port assignments on page 30.

Failsafe

The devices support a failsafe function. This allows you to define the behavior of every single channel configured as an output in the case of invalid PLC data (e.g. PLC in STOP) or of lost PLC communication.

Industrial Internet of Things

UNITRONIC® ACCESS is industry 4.0 ready and supports the integration in IIoT networks via REST API and the IIoT-relevant protocols MQTT, OPC UA and CoAP.

Color-coded connectors

The colored connectors help you avoid confusion in your cabling.

IP protection classes: IP65 / IP67 / IP69K

The IP protection class describes environmental influences that the devices can be exposed to without risk and without suffering damage or causing a risk for the user.

The whole UNITRONIC® ACCESS family offers IP65, IP67 and IP69K.

6 Assembly and wiring

6.1 General information

Mount the device on a flat surface using 2 screws (M4x 25/30). The torque required here is 1 Nm. Use washers for all fastening methods as per DIN 125.

Attention: The devices have a ground connection with an M4 thread for the conduction of interference currents and the EMC immunity. This is labeled with the symbol for the ground and the designation "FE".

Attention: Use a low-impedance connection to connect the device to the reference ground. When using a grounded mounting surface, you can make the connection directly via the fixing screws.

Attention: If the mounting surface is ground-free, use a ground strap or a suitable FE line (FE = Functional Earth). Use an M4 screw to connect the ground strap or the FE line to the ground point and if possible put a washer and a toothed washer below the fixing screw.

6.2 Outer dimensions

6.2.1 UNITRONIC® ACCESS multi-protocol variants with CC-Link IE Field Basic

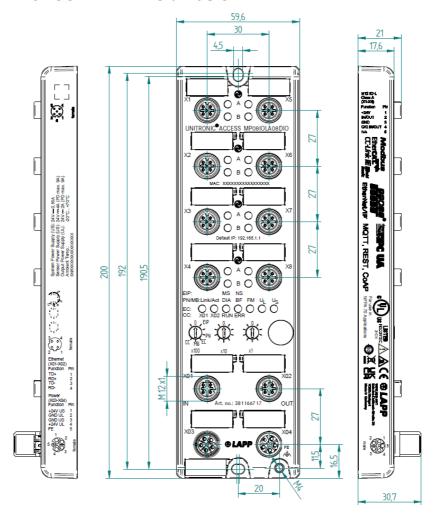


Figure 1: MP08IOLA08DIO

6.2.2 UNITRONIC® ACCESS single-protocol variants with CC-Link IE Field Basic

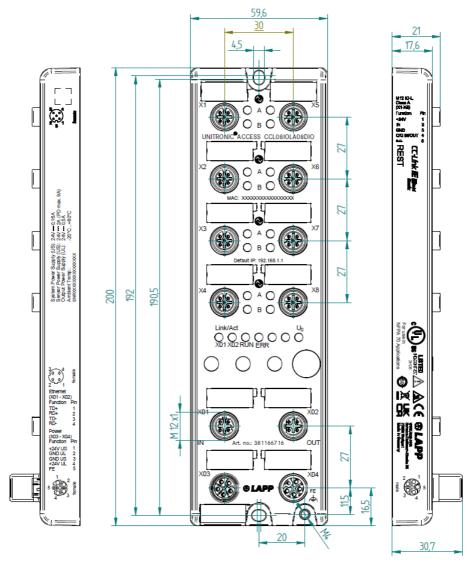


Figure 2: CCL08IOLA08DIO

6.2.3 Notifications

Attention:

For **UL applications**, be sure to use a UL-certified cable with a suitable evaluation to connect the devices (CYJV or PVVA). To program the control, please refer to the OEM information, and only use suitable accessories.

Only approved for interior use. Please note the maximum elevation of 2000 meters. Approved up to a maximum soiling level of 2.

Warning: Terminals, housings field-wired terminal boxes or components can exceed temperatures of +60 °C (140 °F).

Warning: For **UL applications** at a maximum ambient temperature of +70 °C (158 °F):

Use temperature-resistant cables with heat resistance up to at least +125 °C (257 °F) for device variants.

Warning: Observe the following maximum output power for the sensor supply of Class A devices:

Max. 4.0 A per port; for **UL applications** max. 5 A for every port pair X1/X2, X3/X4, X5/X6, X7/X8; max. 9.0 A in total (with derating) for the whole port group X1 .. X8.

6.3 Port assignments

All the contact arrangements shown in this chapter show the frontal view of the connection area for the connectors.

6.3.1 Ethernet ports, M12 socket, 4-pin, D-coded

Color coding: green

Figure 3: Schematic drawing, ports X01, X02

Port	Pin	Signal	Function
Ethernet	1	TD+	Transmit data plus
Ports X01, X02	2	RD+	Receive data plus
	3	TD-	Transmit data minus
	4	RD-	Receive data minus

Table 6: Assignment of ports X01, X02

Caution: Risk of destruction! Never connect the power supply to the data cables.

6.3.2 Power supply with M12 power L-coded

Color coding: gray

Figure 4: Schematic diagram of the M12 L-coding (connector X03 for Power In)

Figure 5: Schematic diagram of the M12 L-coding (socket X04 for Power Out)

6.3.2.1 IO-Link Master with Class A ports

Power supply	Pin	Signal	Function
	1	U _S (+24 V)	Sensor/system power supply
	2	GND_U _L	Ground/reference potential U _L
	3	GND_U _S	Ground/reference potential U _S ¹
	4	U _L (+24 V)	Load supply (NOT electrically isolated to U _S internally in device)
	5	FE	Functional ground

Table 7: Power supply with M12-Power Class A

Attention: Only use power supply units for the system/sensor and actuator supply that correspond to PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage). Power supplies according to EN 61558-2-6 (transformers) or EN 60950-1 (switching power supply units) fulfill these requirements.

¹ U_L and U_S ground connected in device

6.3.2.2 IO-Link Master with Class A/B ports

Power supply	Pin	Signal	Function
Mixed IO-Link (Class A/B) I/O	1	U _S (+24 V)	Sensor/system power supply
ports	2	GND_U _{AUX}	Ground/reference potential U _{AUX} (electrically isolated to GND_U _S internally in device)
	3	GND_U _S	Ground/reference potential U _S
	4	U _{AUX} (+24 V)	Auxiliary supply (electrically isolated to U _S internally in device)
	5	FE	Functional ground

Table 8: Power supply with M12-Power Class A/B

Attention: Only use power supply units for the system/sensor and actuator supply that correspond to PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage). Power supplies according to EN 61558-2-6 (transformers) or EN 60950-1 (switching power supply units) fulfill these requirements.

6.3.3 I/O ports as M12 sockets

Color coding: black

Figure 6: Schematic drawing I/O port as M12 socket IO-Link

6.3.3.1 IO-Link ports (Class A)

MP08	Pin	Signal	Function
IO-Link Class A, ports X1 X8	1	+24 V	power supply +24 V
X1 X0	2	IN/OUT	Ch. B: Digital input or digital output
	3	GND	Ground/reference potential
	4	C/Q	Ch. A: IO-Link data communication, digital input or digital output
	5	n.c.	not connected

PN08IOLA/ EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	Pin	Signal	Function
IO-Link Class A, ports X1 X8	1	+24 V	power supply +24 V
X1 X0	2	IN	Ch. B: Digital input
	3	GND	Ground/reference potential
	4	C/Q	Ch. A: IO-Link data communication, digital input or digital output
	5	n.c.	not connected

Table 9: I/O ports as IO-Link Class A

Used signal names compared to the IO-Link specification conventions:

Pin	UNITRONIC® ACCESS	IO-Link specification	Comment
1	+24 V	L+	Supplied by U _S
2	IN/OUT	I/Q	
3	GND	L-	
4	C/Q IN/OUT	C/Q	

7 Starting operation

7.1 CSP+ file

A CSP+ file describes the information of a CC-Link device and is required to configure the UNITRONIC® ACCESS multi-protocol and UNITRONIC® ACCESS single-protocol variants in an engineering tool. Each device variant requires its own CSP+ file. The file can be downloaded from the product pages on our online catalog: https://lapp.com

On request, the CSP+ file is also sent by the support team.

The CSP+ file and the associated icons are grouped together in an archive file named "0x0670_UNITRONIC ACCESS MP08IOLA08DIO_1.0_en.cspp.zip / 0x0670_UNITRONIC ACCESS CCL08IOLA08DIO_1.0_en.cspp.zip".

"MP08IOLA08DIO" is the model number of the UNITRONIC® ACCESS variant.

Download this file and install it as described in chapter Configuration and operation with GxWorks3 on page 70.

Install the CSP+ file for the respective device variant by using the hardware or network configuration tool of your controller manufacturer.

In GxWorks®, install the files with the CSP+ Hardware Installation Tool.

The UNITRONIC® ACCESS multi-protocol and UNITRONIC® ACCESS single-protocol variants are then available in the hardware catalog as Communications Adapter.

7.2 MAC addresses

Every device has three unique assigned MAC addresses that cannot be changed by the user. The first assigned MAC address is printed onto the device.

7.3 State on delivery

CC-Link IE Field Basic parameters in state on delivery or after a factory reset:

Network mode:	Static
Static IP address:	192.168.3.XXX (XXX = rotary switch position or last stored data)
Subnet mask:	255.255.255.0
Gateway address	192.168.3.100
Device designations:	MP08IOLA08DIO CCL08IOLA08DIO
Product type:	CC-Link IE Field Basic Slave Station

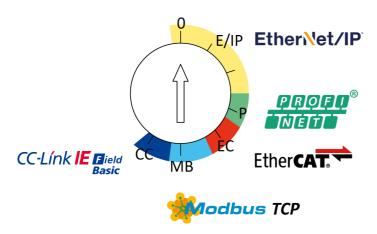
7.4 Setting the rotary encoding switches

The following UNITRONIC® ACCESS IO-Link Master variants additionally provide the protocol CC-Link IE Field Basic (CC):

▶ MP08IOLA08DIO

Caution: Risk of device damage due to corrupt device memory

Any interruption of the power supply to the device during and after protocol selection can lead to a corrupt device memory.


After selecting a protocol followed by a restart of the device, the new protocol is initialized. This can take up to 15 seconds. During this time the device is not usable and the LED indicators are out of function. When the protocol change is complete, the LED indicators return to normal operation and the device can be used again.

Make sure that the power supply is maintained during the entire process.

The UNITRONIC® ACCESS multi-protocol variants allow you to select different protocols for communication within an industrial Ethernet system. In this way the IO-Link Masters with multi-protocol function can be integrated into different networks without it being necessary to purchase products specific for each protocol. This technology also gives you the option to use the same IOL-Master in different environments.

Using rotary encoding switches at the lower front of the devices, you can easily and conveniently set both the protocol and the address of the device, if the protocol to be used supports this. Once you have made a protocol selection and started the cyclical communication, the device stores this setting permanently and uses the selected protocol from this point on. To use another supported protocol with this device, perform a factory reset.

The multi-protocol devices have a total of three rotary encoding switches. With the first rotary encoding switch (x100) you set the protocol by using the corresponding switch position. Additionally, x100 is used to set the third last digit of the IP address for EIP.

With the other rotary encoding switches (x10 / x1), you set the last two digits of the IP address when you are using EtherNet/IP, Modbus TCP or CC-Link IE Field Basic.

Protocol	x100	x10	x1
EtherNet/IP	0-2	0-9	0-9
PROFINET	Р	-	-
EtherCAT®	EC	-	-
Modbus TCP	МВ	0-9	0-9
CC-Link IE Field	СС	0-9	0-9

Table 10: Assignment of the rotary encoding switches for each protocol

The setting you make to select a protocol is described detailed in the protocolspecific sections.

In delivery state no protocol settings are stored in the device. In this case only the desired protocol has to be chosen. To take over a changed rotary encoding switch setting (protocol setting), a power cycle or "Reset" from the Web interface is necessary.

Once you have set the protocol using the rotary encoding switches, the device stores this setting when it starts in cyclic communication. Changing the protocol using the rotary encoding switch is no longer possible after this

point. The device will always start using the stored protocol from that point on. The IP address can be changed depending on the selected protocol.

To change the protocol, carry out a factory reset. In this way you restore the factory settings of the respective device. How you perform the factory reset for your device is described in chapter Factory reset on page 40.

If you position the rotary encoding switch in a manner that is invalid, the device signals this to you with a blink code (the RUN LED blinks continuously).

7.4.1 CC-Link IE Field Basic

If you decide to use CC-Link IE Field Basic as a protocol, use the first rotary encoding switch to select the protocol. The second rotary encoding switch (x10) can be used to configure the 10 position of the last octet of the IP address, and the third rotary encoding switch (x1) allows you to configure the 1 position. Values between 0 and 9 can be selected for the second and third switches. The first three octets of the IP address are set by default to 192.168.3.

For example, the rotary encoding switch setting 6(x100), 1(x10) and 0(x1) gives you an IP address of 192.168.3.10 for CC-Link IE Field Basic. It is only possible to assign IP addresses between 192.168.3.1 and 192.168.3.99 for CC-Link IE Field Basic via the rotary switches.

Rotary switch setting	Function
600 (network parameters already saved)	The network parameters last saved are used (IP address, subnet mask, gateway address).
600 699	The last 2 digits of the saved or preset IP address are overwritten by the setting of the rotary switch.
979	The device performs a reset to the factory settings. The network parameters are also reset to the default values. Communication is not possible in this operation mode.

Table 11: Setting options of the rotary encoding switches for CC-Link IE Field Basic

7.4.2 Factory reset

A factory reset restores the original factory settings and thus resets the changes and settings you have made up to that point. It also resets the protocol selection. To perform a factory reset, set the first rotary encoding switch (x100) to 9, the second (x10) to 7, and the third (x1) also to 9.

Afterwards perform a power cycle and wait 10 seconds due to internal memory write processes.

During the factory reset, the U_S LED lights up red. As soon as the factory settings have been restored, the U_S LED is flashing green.

	x100	x10	x1
Factory Reset	9	7	9

Follow the steps from section Setting the rotary encoding switches again to select a new protocol.

For performing a factory reset via software configuration, see chapter OPC UA configuration on page 95 and the configuration section.

7.5 Setting network parameters

Use the two right-hand rotary switches (x10 and x1) on the front of the device to set the last octet of the static IP address. Each rotary switch in the range of CC-Link IE Field Basic is assigned to one decimal digit, so that you can configure a number between **0** – **99**. During startup, the position of the rotary switches is typically read within one time cycle.

The complete IP address, the subnet mask, the gateway address and the network mode can be configured and stored via the Web server or any other available configuration interfaces. New configuration interfaces can only be applied to after a restart of the device.

For additional information, see chapter Setting the rotary encoding switches.

8 Configuration CC-Link IE Field Basic

Parameters of the UNITRONIC® ACCESS device can be configured via SNMP, the Web server or IIoT protocols. Acyclic messages over SNMP are sent to read and write the configuration. When sending, all existing parameters will be overwritten by this data and the content of the SNMP messages has the highest valence.

To avoid parameter overwriting by the Web server or IIoT protocols during operation, some lock parameters can be enabled in the PLC configuration respectively in the configuration assembly.

The following chapters represent different setting groups with its configuration parameters. The default values are highlighted.

8.1 General settings

Setting	Description	Default value
Suppress U _{Aux}	Report U _L /U _{Aux} supply voltage fault	0
Diagnosis Mode	0 = Report U _L /U _{Aux} supply voltage fault enabled	
	1 = Report U _L /U _{Aux} supply voltage fault disabled	
	2 = Auto	
Suppress Actuator	Report actuator fault without U _L /U _{Aux} voltage	0
Diagnosis without U _L	0 = Report actuator fault without U _L /U _{Aux} voltage enabled	
	1 = Report actuator fault without U _L /U _{Aux} voltage disabled	
Suppress U _S Diagnosis	Report U _S voltage fault	0
	0 = Diagnosis disabled	
	1 = Diagnosis enabled	
Reserved	Reserved	0
Output Auto Restart	Output auto restart	0
	0 = Output auto restart disabled	
	4 - Outrot suts restant smalled	
	1 = Output auto restart enabled	
Web Interface Lock	Web interface lock	0
Web Interface Lock	· · · · · · · · · · · · · · · · · · ·	0
Web Interface Lock	Web interface lock	0
Web Interface Lock Forcing Lock	Web interface lock 0 = Web interface lock disabled	0
	Web interface lock 0 = Web interface lock disabled 1 = Web interface lock enabled	
	Web interface lock 0 = Web interface lock disabled 1 = Web interface lock enabled Force mode lock	
Forcing Lock External Configuration	Web interface lock 0 = Web interface lock disabled 1 = Web interface lock enabled Force mode lock 0 = Force lock disabled	
Forcing Lock	Web interface lock 0 = Web interface lock disabled 1 = Web interface lock enabled Force mode lock 0 = Force lock disabled 1 = Force lock enabled	0

8.1.1 Force mode lock

The input and output process data can be forced via different interfaces (e.g. Web interface, REST, OPC UA, MQTT). The support of interfaces depends on the available software features. If the *Force mode lock* is enabled, it is no longer possible to force input and output process data through these interfaces.

Danger: Risk of physical injury or death! Unattended forcing can lead to unexpected signals and uncontrolled machine movements.

8.1.2 Web interface lock

The Web interface access can be configured. If *Web interface lock* is enabled, the Web pages are no longer reachable.

8.1.3 Report U_L/U_{AUX} supply voltage fault

During commissioning, it is possible that no power supply is connected to the U_L/U_{AUX} pins. Therefore it can be helpful to suppress and disable the U_L/U_{AUX} supply voltage fault diagnosis.

8.1.4 Report actuator fault without U_L/U_{AUX} voltage

During commissioning, it is possible that no power supply is connected to the U_L/U_{AUX} pins. Therefore it can be helpful to suppress and disable the *Report* actuator fault without U_L/U_{AUX} voltage diagnosis.

8.1.5 Report U_S voltage fault

During commissioning, it is possible that no power supply is connected to the U_S pins. Therefore it can be helpful to suppress and disable the *Report U_S voltage fault* diagnosis.

8.1.6 External configuration lock

Configuration parameters can be set via different alternative interfaces (e.g. Web interface, REST, OPC UA, MQTT). An external configuration can only be done, if no cyclic PLC connection is active. Every new PLC configuration overwrites the external configuration settings.

8.2 Port configuration X1 .. X8

Setting	Description	Default value
Port Mode	Port Mode 0: Deactivated 1: IO-Link Manual 2: IO-Link Auto 3: Digital Input 4: Digital Output	3
Validation Check	Validation Option 0: No device check and clear (no data storage) 1: Type compatible V1.0 device (no data storage) 2: Type compatible V1.1 device (no data storage) 3: Type compatible V1.1 device with Backup & Restore (download + upload) 4: Type compatible V1.1 device with Restore (download master to device)	0
IQ (Pin 2) Mode	IQ Mode 0: Deactivated 1: Digital Input 2: Digital Output 5: Aux* *exclusively applicable for Class A/B Mixmodules	1
Cycle Time	Cycle Time 0: As fast as possible 1: 1.6 ms 2: 3.2 ms 3: 4.8 ms 4: 8.0 ms 5: 20.8 ms 6: 40.0 ms 7: 80.0 ms 8: 120.0 ms	0
Vendor ID	Vendor ID 0 65535 ("0")	0
Device ID	Device ID 0 16777215 ("0")	0

Setting	Description	Default value
IO-Link Failsafe Mode	Failsafe Mode 0: Set Low 1: Set High 2: Hold Last 3: Replacement Value 4: IO-Link Master Command	0
IO-Link Failsafe Value 031	IOL Failsafe replacement values Between 0 255	0
Swap Length Consuming	Swap Length (Consuming data) 0: DWORD 1: WORD	0
Offset Consuming	Swap Offset (Consuming data) 0 30 Byte	0
Swap Count Consuming	Swap Count (Consuming data) 0 30 Byte	0
Swap Length Producing	Swap Length (Producing data) 0: DWORD 1: WORD	0
Offset Producing	Swap Offset (Producing data) 0 30 Byte	0
Swap Count Producing	Swap Count (Producing data) 0 30 Byte	0
Sensor Supply Disabled	Sensor Supply Disabled 0: Supply electric voltage to sensor 1: Do not supply electric voltage to sensor	0
Suppress all Diagnosis	Suppress all Diagnosis 0: Generate diagnosis on this channel 1: Do not generate any diagnosis on this channel	0
Surv. Timeout (Pin 2)	DO Surveillance Timeout for Pin 2 (IQ) Valid values: 0 255	80
Surv. Timeout (Pin 4)	DO Surveillance Timeout for Pin 4 (CQ) Valid values: 0 255	80

Setting	Description	Default value
Failsafe Mode SIO (Pin 2)	DO Failsafe for Pin 2 (IQ) 0: Set Low 1: Set High 2: Hold Last	0
Failsafe Mode SIO (Pin 4)	DO Failsafe for Pin 4 (CQ) 0: Set Low 1: Set High 2: Hold Last	0
DI Filter (Pin 2)	DI Filter for Pin 2 (IQ) 0: Disabled 1: 10 ms 2: 20 ms 3: 30 ms 4: 60 ms 5: 100 ms 6: 150 ms	0
DI Filter (Pin 4)	DI Filter for Pin 4 (CQ) 0: Disabled 1: 10 ms 2: 20 ms 3: 30 ms 4: 60 ms 5: 100 ms 6: 150 ms	0
DI Logic (Pin 2)	DI Logic for Pin 2 (IQ) 0: Normally Open 1: Normally Close	0
DI Logic (Pin 4)	DI Logic for Pin 4 (CQ) 0: Normally Open 1: Normally Close	0
DO Restart (Pin 2)	DO Restart for Pin 2 (IQ) 0: Disable 1: Enable	0
DO Restart (Pin 4)	DO Restart for Pin 4 (CQ) 0: Disable 1: Enable	0

Setting	Description	Default value
Error LED Disable (Pin 2)	Disable Pin 2 Error LED 0: Enable LED on channel B 1: Disable LED on channel B	0
Error LED Disable (Pin 4)	Disable Pin 4 Error LED 0: Enable LED on channel A 1: Disable LED on channel A	0
Level LED Disable (Pin 2)	Disable Pin 2 Level LED 0: Enable LED on channel B 1: Disable LED on channel B	0
Level LED Disable (Pin 4)	Disable Pin 4 Level LED 0: Enable LED on channel A 1: Disable LED on channel A	0
Use Push-Pull (Pin 4)	Use Push-Pull for Pin 4 0: Use High-Side switches 1: Use Push-Pull	0
Current limit (Pin 2)	Pin 2 current limit (maximum current limit till Pin 2 is turned off) 0 65535	65535
Current limit (Pin 4)	Pin 4 current limit (maximum current limit till Pin 4 is turned off) 0 65535	65535
DI Latch (Pin 4)	Enable Input Latch for Pin 4 0: Disable 1: Enable	0
DI Latch (Pin 2)	Enable Input Latch for Pin 2 0: Disable 1: Enable	0
DI Extension (Pin 4)	Set Input Extension for Pin 4 0 255 ms	0
DI Extension (Pin 2)	Set Input Extension for Pin 2 0 255 ms	0

8.2.1 Port Mode

The *Port Mode* describes how the IO-Link Master handles the presence of an IO-Link device at the port.

Deactivated:

The IO-Link port is deactivated but can be configured for later use. No diagnostics are generated if the IO-Link device is not connected.

IO-Link Manual:

The IO-Link port is activated and explicit port configuration can be done for the parameters *Validation and Backup* (Inspection Level), *Vendor ID*, *Device ID* and *Cycle Time*.

IO-Link Auto:

The IO-Link port is activated and no explicit port configuration is needed. Configurations such as *Validation and Backup* (Inspection Level), *Vendor ID*, *Device ID* and *Cycle Time* are not required.

Digital Input:

In this mode, the channel operates as digital input. The channel state can be seen in the *Digital Input Channel* status of the cyclic process data.

Digital Output:

In this mode, the channel operates as digital output. The channel can be controlled by the *Digital Output Channel Control* (first two bytes of the output data) or by the *IO-Link Output Data* (first byte of each IO-Link device output data) of the cyclic process data. This depends on the *Digital Output Control* parameter in the general settings.

8.2.2 Validation and Backup

With this parameter, the user can set the behavior of the IO-Link ports regarding the type compatibility and data storage mechanism of the connected IO-Link Device.

The precondition for using *Validation and Backup* is that you configure the *Port Mode* to "IO-Link Manual".

The IO-Link Master has a backup memory which can be used for storing the device parameters and for restoring them on the device. This backup memory can be deleted by the following events:

- ▶ IO-Link Master factory reset
- ► Channel Mode reconfiguration, e.g. from "Digital-Input" to "IO-Link"
- ▶ Validation and Backup reconfiguration, e.g. from "No device check" to "Type compatible V1.1 device with Backup & Restore"

For further information refer to the 'IO-Link Interface and System Specification' version 1.1.3 which can be downloaded from https://io-link.com/

No device check (no data storage):

No check of connected Vendor ID or Device ID and no "Backup and Restore" support of the IO-Link Master parameter server.

Type compatible V1.0 device (no data storage):

Type compatible according IO-Link specification V1.0 which includes validation of Vendor ID and Device ID. The IO-Link specification V1.0 does not support IO-Link Master parameter server.

Type compatible V1.1 device (no data storage):

Type compatible according IO-Link specification V1.1 which includes validation of Vendor ID and Device ID. "Backup and Restore" is disabled.

Type compatible V1.1 device with Backup + Restore (upload + download):

Type compatible according IO-Link specification V1.1 which includes validation of Vendor ID and Device ID. "Backup and Restore" is enabled.

Pay attention to the following explanations regarding *Backup and Restore* conditions:

Backup (Device to Master):

A Backup (upload from IOL-Device to IOL-Master) is performed when an IO-Link Device is connected and the Master does not have any valid parameter data. The read parameter data are permanently stored on the IO-Link Master.

An upload will also be performed, when the IO-Link Device has set the DS_UPLOAD_FLAG (Data Storage Upload Flag). This IOL-Device flag can be set in two ways:

- Parameters written to IOL-Device in *Block Parameter* mode: An IO-Link Device sets the DS_UPLOAD_FLAG self-dependent, if the parameters were written in block parameter mode to the IO-Link Device with the last system command ParamDownloadStore (e.g. by a third party USB IO-Link Master for commissioning).
- Parameters written to IOL-Device in Single Parameter mode: If single parameter data is changed on the IOL-Device during runtime, the stored device parameters on the IOL-Master can be updated using the ParamDownloadStore (index 0x0002, subindex 0x00, value 0x05) command. This command sets the DS_UPLOAD_REQ flag on the IOL-Device and thus the IO-Link Master executes an upload procedure from the IO-Link Device.

Restore (Master to Device):

A Restore (download from IOL-Master to IOL-Device) is performed when an IO-Link Device is connected and the IO-Link Master has valid parameter data stored which are usable for the IOL-Device and not equal compared to the device parameters.

The restore procedure can be blocked by the IO-Link Device via the *Device Access Locks* parameter when supported by the IO-Link Device (Index 0x000C, refer to vendor specific IO-Link Device documentation).

Type compatible V1.1 device with Restore (download Master to Device):

Type compatible according IO-Link specification V1.1 which includes validation of Vendor ID and Device ID. Only "Restore" is enabled.

Pay attention to the following explanations regarding *Restore* conditions:

Restore (Download / IOL-Master to IOL-Device):

A Restore (download from IOL-Master to IOL-Device) is performed when an IO-Link Device is connected and the IO-Link Master has valid parameter data stored which are usable for the IOL-Device and not equal compared to the device parameters.

In the *Restore* mode no change of the IOL-Device parameters will be stored permanently on the IOL-Master. When the IOL-Device sets the DS_UPLOAD_FLAG in this mode, the device parameters will be restored by the IOL-Master.

The restore procedure can be blocked by the IO-Link Device via the *Device Access Locks* parameter when supported by the IO-Link Device (Index 0x000C, refer to vendor specific IO-Link Device documentation).

8.2.3 IQ Mode

The operating mode of Pin 2 (Channel B) of the respective IO-Link channel can be configured via this parameter.

Digital Output:

In this mode, the channel operates as digital output. The channel can be controlled by the *Digital Output Channel Control* (first two bytes of the output data) or by the *IO-Link Output Data* (first byte of each IO-Link device output data) of the cyclic process data. This depends on the *Digital Output Control* parameter in the general settings.

Digital Input:

In this mode, the channel operates as digital input. The channel state can be seen in the *Digital Input Channel* status of the cyclic process data.

AUX:

This option is exclusively applicable for Class A/B Mixmodules.

In this mode, Pin 2 of the IO-Link port acts as an auxiliary voltage output. The auxiliary voltage is fed by the U_{AUX} supply input. The auxiliary voltage output cannot be controlled.

8.2.4 Cycle Time

The IO-Link cycle time can be configured by this parameter.

The precondition for using *Cycle Time* is that you configure *Port Mode* to "IO-Link Manual".

As fast as possible:

The IO-Link port uses the max. supported IO-Link Device and Master update cycle time for the cyclic I/O data update between IO-Link Master and IO-Link Device.

1.6 ms, 3.2 ms, 4.8 ms, 8.0 ms, 20.8 ms, 40.0 ms, 80.0 ms, 120.0 ms:

The cycle time can be set manually to the provided options. This option can be used e.g. for IO-Link devices which are connected over inductive couplers. Inductive couplers are normally the bottleneck in the update cycle

time between IO-Link Master and IO-Link Device. In this case, please refer to the data sheet of the inductive coupler.

8.2.5 Vendor ID

The *Vendor ID* is needed for the validation of the IO-Link device and can be configured with this parameter.

Precondition for using the *Vendor ID* is that you configure *Port Mode* to "IO-Link Manual". *Validation and Backup* must be set to a type compatible V1.X device

8.2.6 Device ID

The *Device ID* is needed for the validation of the IO-Link device and can be configured with this parameter.

Precondition for using the *Device ID* is that you configure *Port Mode* to "IO-Link Manual". *Validation and Backup* must be set to a type compatible V1.X device.

8.2.7 IOL Failsafe

The UNITRONIC® ACCESS devices support a failsafe function for the output data of the IO-Link channels. In case of an internal device error, the PLC is in STOP state and cannot provide valid process data, the connection is interrupted or the communication is lost: The output data of the IO-Link channels is controlled by the configured failsafe values.

Set Low:

If failsafe is active, all bits of the IO-Link output data are set to low ("0").

Set High:

If failsafe is active, all bits of the IO-Link output data are set to high ("1").

Hold Last:

If failsafe is active, all bits of the IO-Link output data arel hold the last valid process data state ("0" or "1").

Replacement Value:

A replacement value can be set via the *IO-Link Failsafe* parameter object for every IO-Link device. If failsafe is active, these replacement values are transmitted to the IO-Link device. Take into account that in the case of an error the replacement values are sent instead of the output process data so that a configured *Swapping Mode* has influence on the byte order.

IO-Link Master Command:

If failsafe is active, an IO-Link-specific mechanism for valid/invalid output process data is used and the IO-Link device determines the behavior itself.

8.2.8 IOL Failsafe values

IOL failsafe values represent byte-wise 32 replacement values. If failsafe is active, these values are transmitted to the IO-Link Device.

8.2.9 Swapping Length

The byte order of IO-Link is big endian. For setting output data in the correct format, the parameters *Swapping Mode* and *Swapping Offset* support the user. There can be selected up to 16 words or up to 8 double words for converting the output data.

Raw IO-Link Data:

No byte swap

Data type DWORD:

Data byte order: Byte 1, Byte 2, Byte 3, Byte 4
Order after Swap: Byte 4, Byte 3, Byte 2, Byte 1

Data type WORD:

Data byte order: Byte 1, Byte 2 Order after Swap: Byte 2, Byte 1

8.2.10 Swapping Offset

The Swapping Offset describes the start point in the process data for using the configured Swapping Length. Both parameters are dependent on the configured input or output data size.

8.2.11 Swapping Count

The Swapping Count describes the number of bytes in the process data to be swapped using the configured Swapping Length.

8.2.12 Sensor Supply Disabled

The supply of sensors can be disabled when *Sensor Supply Disabled* is set. The IO-Link Master will disable the supply for the respective IO-Link port.

8.2.13 Suppress all Diagnosis

By default, the IO-Link Master generates all possible diagnostics and will send reports via cyclic and cyclic data. All diagnostics can be suppressed by setting *Suppress all Diagnosis*.

8.2.14 DO Surveillance Timeout

The digital output channels are monitored during runtime. The error states are detected and reported as a diagnosis. To avoid error states during the switching of output channels, the surveillance timeout can be configured as a delay with deactivated monitoring.

The delay time begins with a rising edge of the output control bit. After delay time has elapsed, the output is monitored and error states are reported by diagnosis. When the channel is permanently switched on or off, the typical filter value (not changeable) is 5 ms.

8.2.15 DO Failsafe

The UNITRONIC® ACCESS devices support a failsafe function for the channels used as digital outputs. In case of an internal device error, the PLC is in STOP state and cannot provide valid process data. The connection is interrupted or the communication is lost. The outputs are controlled according to the configured failsafe values.

Set Low:

If failsafe is active, the physical output pin of the channel is set to low ("0").

Set High:

If failsafe is active, the physical output pin of the channel is set to high ("1").

Hold Last:

If failsafe is active, the physical output pin of the channel holds the last valid process data state ("0" or "1").

8.2.16 DO Restart Mode

In case of a short circuit or overload at an output channel, a diagnosis is reported and the output is switched to "off".

If *DO Restart Mode* is disabled, the output channel is not automatically turned on again. It can be turned on after a logical reset of the process output data of the channel.

If DO Restart Mode for this channel is enabled, the output will automatically be turned on again after a fix time delay for checking if the overload or short circuit condition is still active. When it is active, the channel is switched off again.

8.2.17 DI Logic

The logical state of an input channel can be configured via these parameters. If a channel is set to "Normally Open", a low signal ("0") is transferred to the process input data (e.g. if a non-damped sensor has an open switching output).

If a channel is set to "Normally Close", a high signal ("0") is transferred to the process input data (e.g. if a non-damped sensor has a closed switching output).

The channel LED shows, independent of these settings, the physical input state of the port pin.

8.2.18 DI Filter

A filter time for every digital input channel can be configured by these parameters. When there is no need for a filter it can be disabled.

8.2.19 Error LED Disable

Every channel of the ports X1 .. X8 has an error LED. The error LED can be disabled by enabling the parameter *Error LED Disable*. When this parameter is enabled, the LED status will not be "ON" in the case of an error on the port.

8.2.20 Level LED Disable

Every channel of the ports X1 .. X8 has a level LED. The level LED can be disabled by enabling the parameter *Level LED Disable*. When this parameter is enabled, the LED status will not be "ON" in case the input or output are high.

8.2.21 Use Push Pull

If $Use\ Push\ Pull$ is enabled, the output will be switched active to high or low. In low state, the output can be a current sink. The digital output is supplied by U_S with a maximum current of 0.5 A.

When this option is not enabled, it will use option "High-Side switch" and the current limit is set according to the parameter *Current limit*. This option is not available for the Channel B of any port.

8.2.22 Current Limit

With this parameter you can configure the current limitations for the digital outputs. You can choose between different current limit options.

In low state, the output has a high impedance. The digital output is supplied by U_L or U_{AUX} , depending on the device variant, and has a selectable current limit. This means that the output is turned off and the actuator channel error diagnosis is reported when this limit is exceeded. If you set the level to 2.0 A max., the current limitation is not active and the maximum output current is available.

8.2.23 DI Latch

With this parameter enabled, a rising edge at digital input is held high in the input status data (latched) as this is acknowledged by the PLC.

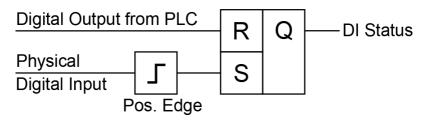


Figure 7: Input latch

R	s	Q
0	0	x (hold last)
0	1	1
1	0	0
1	1	0

Table 12: Truth table for input latch

When the input latch is enabled for a specific channel:

- ► The corresponding physical input of the channel is logically connected to the set input of a latch via an edge detector.
- ► The corresponding PLC output control bit (consuming data of I/O device) is logically connected to the reset input of the latch.
- ► The latch output is connected to the PLC input status data (producing data of the I/O device) of the corresponding channel.
- ▶ The latch will work according to the truth table above.
- ▶ It is not possible to directly read the physical input status data of that input channel, as the latch output is mapped to the PLC input status data.

The behavior in detail:

- A rising edge on the digital input will trigger the latch and set the latch output to '1'.
- ▶ The output will remain '1' until it is reset by the PLC program.
- ▶ A logical '1' on the corresponding PLC output control bit for that channel will reset the latch and set the latch output to '0', regardless of the set input or physical input state.

- ▶ If the input logic is inverted in the channel configuration, the inverted input logic is connected to the latch. Therefore, it will trigger on the falling edge regarding to a physical input signal.
- ▶ If the input is already high during enabling the latch, the latch will set to '1' (Q).

These DI Latch settings only work for channels that have been set to 'digital input mode'. It is recommended to always reset the latch before usage.

Default: Disabled

8.2.24 DI Extension

This parameter extends the duration of the digital input status after a state change at the physical input, when the input state change is faster than the extension time set.

The extension time will be applied on 'high' to 'low' and 'low' to 'high' input transitions. This setting only works for channels that have been set to 'digital input'.

Example:

The DI extension parameter is set to 16 ms, the physical input signal has low status => a high signal is detected for 8 ms.

In this case, the DI channel reports a high-status signal for 16 ms, regardless of other physical input signal transitions during this time.

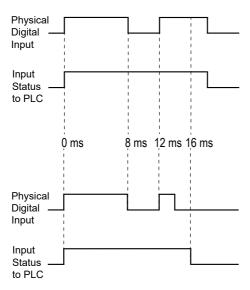


Figure 8: DI Extension

Available values: Off; 8 ms; 16 ms; 64 ms

Default: Off

9 Process data assignment

The UNITRONIC® ACCESS devices in general support process data communication in both directions. The consuming data in this context is defined as the process output data which controls physical outputs and IO-Link output data. The producing data in this context is defined as the process input data which contains the physical inputs, diagnostics and IO-Link input data with optional extended status and event data.

The following chapters describe the data images for the consuming and producing data direction which are assigned to the output and input assemblies.

9.1 Consuming data (output)

Attention: Depending on the engineering tool used, the numbering of the registers is displayed as octal, decimal or hexadecimal.

Port No.	Pin	Register for DO	Register for IO-Link	Access
X1	4	Y0	RWw00 – RWw0F	RW ("Read/Write")
	2	Y1	-	RW
X2	4	Y2	RWw10 – RWw1F	RW
	2	Y3	-	RW
X3	4	Y4	RWw20 – RWw2F	RW
	2	Y5	-	RW
X4	4	Y6	RWw30 – RWw3F	RW
	2	Y7	-	RW
X5	4	Y8	RWw40 – RWw4F	RW
	2	Y9	-	RW
X6	4	YA	RWw50 – RWw5F	RW
	2	YB	-	RW
X7	4	YC	RWw60 – RWw6F	RW
	2	YD	_	RW
X8	4	YE	RWw70 – RWw7F	RW
	2	YF	-	RW

Register for DO = single bit

Register for IO-Link = WORD

9.2 Producing data (input)

Attention: Depending on the engineering tool used, the numbering of the registers is displayed as octal, decimal or hexadecimal.

Port No.	Pin	Register for DI	Register for IO-Link	Access
X1	4	X0	RWr00 – RWr0F	R ("Read Only")
	2	X1	-	R
X2	4	X2	RWr10 – RWr1F	R
	2	Х3	-	R
X3	4	X4	RWr20 – RWr2F	R
	2	X5	-	R
X4	4	X6	RWr30 – RWr3F	R
	2	X7	-	R
X5	4	X8	RWr40 – RWr4F	R
	2	Х9	-	R
X6	4	XA	RWr50 – RWr5F	R
	2	ХВ	-	R
X7	4	xc	RWr60 – RWr6F	R
	2	XD	-	R
X8	4	XE	RWr70 – RWr7F	R
	2	XF	-	R

Register for DI = single bit

Register for IO-Link = WORD

10 Diagnostics processing

Port No.	Register for Diagnosis	Description	Access
X1	X20	X1 IO-Link data valid	R ("Read only")
X2	X21	X2 IO-Link data valid	R
Х3	X22	X3 IO-Link data valid	R
X4	X23	X4 IO-Link data valid	R
X5	X24	X5 IO-Link data valid	R
X6	X25	X6 IO-Link data valid	R
X7	X26	X7 IO-Link data valid	R
X8	X27	X8 IO-Link data valid	R

Sr. No.	Register for Diagnosis	Description	Access
1	X38	U _S supply present	R ("Read only")
2	X39	U _S supply Fault	R
3	X3A	U _L supply present	R
4	ХЗВ	U _L supply Fault	R
5	X3C	Internal module error	R
6	X3D	Force mode diagnosis	R

10.1 Error of the system/sensor power supply

The voltage value for the incoming system/sensor power supply is also monitored globally. If the voltage drops below approx. 18 V, or exceeds approx. 30 V, an error diagnosis is generated. The IO-Link specification requires at least 20 V at the L+ (pin1) output supply of the I/O ports. At least 21 V of $\rm U_S$ supply voltage for the IO-Link Master are required to minimize the risk of internal voltage drops in the IO-Link Master.

The green U_S indicator is off.

The error diagnosis has no effect on the outputs.

Caution: It must definitely be ensured that the supply voltage, measured at the most remote participant is not below 21 V DC from the perspective of the system power supply.

10.2 Error of the auxiliary/actuator power supply

The voltage value for the incoming auxiliary/actuator power supply is also monitored globally. If *Report U_L/U_{Aux} Supply Voltage Fault* is enabled, an error message is generated when the voltage drops below approx. 18 V or exceeds approx. 30 V. The U_L/U_{Aux} indicator shows red.

If output channels are set to *High State* and *Report DO Fault without U_L/U_{Aux}*, additional error diagnostics, caused by the voltage failure, are generated on the channels.

If Report U_L/U_{Aux} Supply Voltage Fault is disabled, no U_L/U_{Aux} or channel diagnostics appear.

10.3 Overload/short circuit of the digital outputs

In case of an overload or a short circuit of an output channel, the following channel-specific diagnostics are generated in the producing data image.

Port No.	Pin	Register for Diagnosis	Description	Access
X1	4	X10	Short circuit X1 Channel A	R ("Read only")
	2	X11	Short circuit X1 Channel B	R
X2	4	X12	Short circuit X2 Channel A	R
	2	X13	Short circuit X2 Channel B	R
Х3	4	X14	Short circuit X3 Channel A	R
	2	X15	Short circuit X3 Channel B	R
X4	4	X16	Short circuit X4 Channel A	R
	2	X17	Short circuit X4 Channel B	R
X5	4	X18	Short circuit X5 Channel A	R
	2	X19	Short circuit X5 Channel B	R
X6	4	X1A	Short circuit X6 Channel A	R
	2	X1B	Short circuit X6 Channel B	R
X7	4	X1C	Short circuit X7 Channel A	R
	2	X1D	Short circuit X7 Channel B	R
X8	4	X1E	Short circuit X8 Channel A	R
	2	X1F	Short circuit X8 Channel B	R

A channel error is determined by comparing the target value set of a controller to the physical value of an output channel.

When an output channel is activated (rising edge of the channel state), the channel errors are filtered for the period that is set by the "Surveillance-Timeout" parameter via the configuration of the device. The value of this parameter can range from 0 to 255 ms; the default setting is 80 ms.

The filter is used to avoid premature error messages during the activation of a capacitive load, the deactivation of an inductive load or during any other voltage peak when changing a status.

10.4 Overload/short circuit of the actuator power supply P24

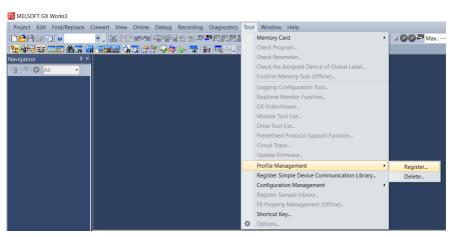
In case of an overload or a short circuit of the actuator power supply P24 (Class B) on the ports (X5 .. X8), the following channel-specific diagnostics in the producing data image are generated.

Port No.	Register for Diagnosis	Description	Access
X1	X30	reserved	R ("Read only")
X2	X31	reserved	R
Х3	X32	reserved	R
X4	X33	reserved	R
X5	X34	X5 actuator supply P24 short circuit	R
X6	X35	X6 actuator supply P24 short circuit	R
X7	X36	X7 actuator supply P24 short circuit	R
X8	X37	X8 actuator supply P24 short circuit	R

10.5 Overload/short-circuit of the I/O port sensor supply outputs

In case of an overload or a short circuit between pin 1 and pin 3 on the ports (X1 .. X8), the following channel-specific diagnostics in the producing data image are generated.

Port No.	Register for Diagnosis	Description	Access
X1	X28	X1 sensor short circuit	R ("Read only")
X2	X29	X2 sensor short circuit	R
Х3	X2A	X3 sensor short circuit	R
X4	X2B	X4 sensor short circuit	R
X5	X2C	X5 sensor short circuit	R
X6	X2D	X6 sensor short circuit	R
X7	X2E	X7 sensor short circuit	R
X8	X2F	X8 sensor short circuit	R

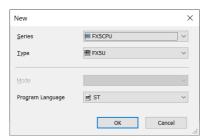

11 Configuration and operation with GxWorks3®

The configuration and start-up of UNITRONIC® ACCESS devices described in this chapter refers to the Mitsubishi Engineering Tool GxWorks®, V2. If you are using an engineering tool from another provider, please consider the related documentation.

11.1 Integration of a CSP+ file

Perform the following work steps to integrate a CSP+ file in GxWorks3®:

1. Open GxWorks3® and navigate to **Tool > Profile Management > Register**.



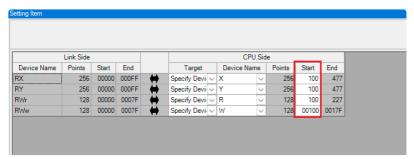
2. Select 0x0670_UNITRONIC ACCESS ...08DIO_1.0_en.cspp.zip and the CSP+ file will be registered.

11.2 Network parameters

Perform the following work steps to change the Network parameters:

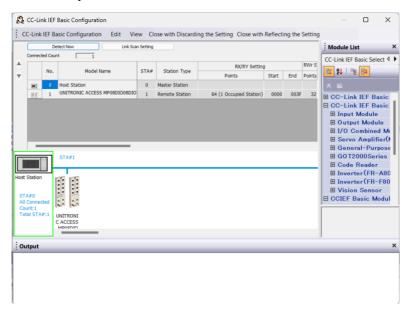
- 1. Open GxWorks3® and create a new project.
- 2. Select the series and the type of the used PLC.

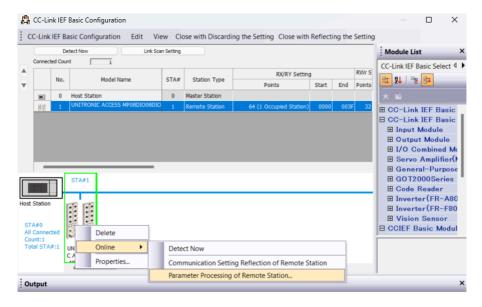
3. To open the setting window, navigate to Project > Parameter > "the selected CPU module" > Module Parameter


In the appearing window, the CC-Link IE Field Basic Master station can be configured.

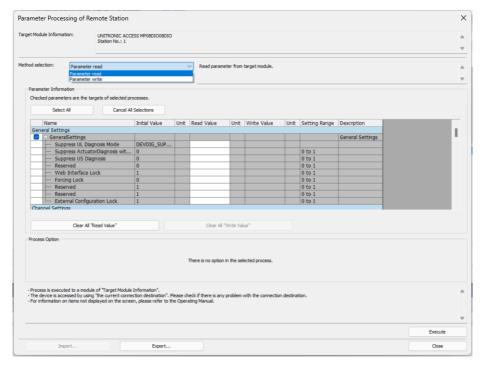
4. Navigate to Own Node Settings to configure the PLC or Master station.

5. Under CC-Link IEF Basic settings > To Use or Not to Use CC-Link IEF Basic Setting select "Use".


- ► The option Network Configuration Settings allows you to configure a CC-Link IE Field Basic Master, connected stations, a Network, parameters and many more.
- Settings under Refresh Settings are necessary for the automatic data transfer between Link side and CPU side:


11.3 Parameter processing

Under *Network Configuration Settings*, individual stations can be configured. Perform the following work steps to configure a UNITRONIC® ACCESS device:


1. Select the UNITRONIC® ACCESS device from the *Module List*. Alternatively, click the button **Detect Now** for automatic detection of devices.

2. Right-click on "Slave Station" and select **Online > Parameter Processing** of **Slave Station...**.

3. In the next window under *Method selection*, choose "Parameter read" or "Parameter write", depending on which method you want to configure for the UNITRONIC® ACCESS device. For details on the different parameters please refer to chapter Configuration CC-Link IE Field Basic on page 42.

4. After having adjusted the parameters, click on **Communication Setting Reflection of Slave Station** to apply the changes to the respective module.

12 IIoT functionality

The UNITRONIC® ACCESS variants offer a number of new interfaces and functions for the optimal integration into existing or future IIoT (Industrial Internet of Things) networks. The devices continue to work as field bus devices which communicate with and are controlled by a PLC (Programmable Logic Controller).

In addition, the devices offer common IIoT interfaces, which enable new communication channels besides the PLC. The communication is performed via IIoT-relevant protocols MQTT and OPC UA. With the help of these interfaces not only all information in a UNITRONIC® ACCESS device can be read. They also enable its configuration and control, if the user wishes. All interfaces can be configured extensively and offer read-only functionality.

All UNITRONIC® ACCESS variants provide user administration, which is also applicable for accessing and configuring the IIoT protocols. This allows you to manage all modification options for the device settings via personalized user authorizations.

All IIoT protocols can be used and configured independently of the field bus. It is also possible to use the devices completely without the help of a PLC and control them via IIoT protocols.

Attention: When using the IIoT functionality, a protected local network environment without direct access to the Internet is recommended.

Attention: Only activate one of the IIoT protocols at a time. Exclusively use MQTT or OPC UA.

12.1 MQTT

MQTT functions are **only** applicable for the following UNITRONIC® ACCESS variants:

▶ MP08IOLA08DIO

The MQTT (Message Queuing Telemetry Transport) protocol is an open network protocol for machine-to-machine communication, which provides the transmission of telemetric data messages between devices. The integrated MQTT client allows the device to publish a specific set of information to an MQTT broker.

The publishing of messages can either occur periodically or be triggered manually.

Attention: When using MQTT, the OPC UA protocol must be disabled.

12.1.1 MQTT configuration

In **delivery state**, MQTT functions are **disabled**. The MQTT client can be configured either using the Web interface or directly via a JSON object sent in an HTTP/HTTPS request. For more information see chapter MQTT configuration - Quick start guide on page 92.

The configuration URL is:

http://[ip-address]/w/config/mqtt.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/mqtt.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. The configuration changes apply only after a device restart.

The following configuration elements are available (default values in bold):

Element	Data type	Description	Example data
mqtt-enable	boolean	Master switch for the MQTT client.	true / false
broker	string	IP address of the MQTT Broker	"192.168.1.1"
login	string	Username for MQTT Broker	"admin" (Default: null)
password	string	Password for MQTT Broker	"private" (Default: null)
port	number	Broker port	1883
base-topic	string	Base topic	"iomodule_[mac]" (Default: "unitronic")
will-enable	boolean	If true, the device provides a last will message to the broker	true / false
will-topic	string	The topic for the last will message.	(Default: null)
auto-publish	boolean	If true, all enabled domains will be published automatically in the specified interval.	true / false
publish-interval	number	The publish interval in ms if autopublish is enabled. Minimum is 250 ms.	2000
publish-identity	boolean	If true, all identity domain data will be published	true / false
publish-config	boolean	If true, all config domain data will be published	true / false
publish-status	boolean	If true, all status domain data will be published	true / false
publish-process	boolean	If true, all process domain data will be published	true / false
publish-devices	boolean	If true, all IO-Link Device domain data will be published	true / false
commands-allowed	boolean	Master switch for MQTT commands. If false, the device will not subscribe to any command topic, even if specific command topics are activated below.	true / false
force-allowed	boolean	If true, the device accepts force commands via MQTT.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via MQTT.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via MQTT.	true / false

Element	Data type	Description	Example data
qos	number	for all published messages.	0 = At most once 1 = At least once 2 = Exactly once

Table 13: MQTT configuration

MQTT response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred and "-1" if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element which caused the error, and a field "Message" for the error message.

- ► A malformed JSON object produces an error.
- Not existing parameters produce an error.
- Parameters with a wrong data type produce an error.

It is not allowed to write all available parameters at once. You may write only one or a limited number of parameters.

Examples:

```
{"status": -1, "error": [{"Element": "publish-interval", "Message": "Integer
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

For more information see chapter MQTT topics on page 80.

12.1.2 MQTT topics

MQTT mainly relates to topics. All messages are attached to a topic which adds context to the message itself. Topics may consist of any string and they are allowed to contain slashes (/) as well as wildcard symbols (*, #).

12.1.2.1 Base topic

For all UNITRONIC® ACCESS variants there is a configurable Base topic which is the prefix for all topics. The Base topic can be chosen freely by the user. The Base topic can also contain selected variables as shown in Table 14: Base topic variables on page 80.

Variables in the Base topic have to be written in brackets ("[]"). The following variables are possible:

Variable	Description
mac	The MAC address of the device
name	The name of the device
order	The ordering number of the device
serial	The serial number of the device

Table 14: Base topic variables

Example:

The Base topic "io_[mac]" translates to "io_A3B6F3F0F2F1".

All data is organized in domains. The domain name is the first level in the topic after the Base topic. Note the following notation:

Base-Topic/domain/.....

There are the following domains:

Domain name	Definition	Example content
identity	All fixed data which is defined by the used hardware and which cannot be changed by configuration or at runtime.	Device name, ordering number, MAC address, port types, port capabilites and more.
config	Configuration data which is commonly loaded once at startup, mostly by a PLC.	IP address, port modes, input logic, failsafe values and more.
status	All (non-process) data which changes quite often in normal operation.	Bus state, diagnostic information, IO- Link Device status and data.
process	All process data which is produced and consumed by the device itself or by attached devices.	Digital inputs, digital outputs, cyclic IO- Link data.
iold	IO-Link Device parameters according to the IO-Link specification.	Vendor name, product name, serial number, hardware revision, software revision and more.

Table 15: Data domains

There is often one topic used for all gateway related information and topics for each port. All identity topics are published just once at start-up, because this information should never change. All other topics are published either in a fixed interval or just triggered manually, according to the configuration.

Topic	Content examples	Total publish count	Publish interval
[base-topic]/identity/ gateway	Name, ordering number, MAC, vendor, I&M etc.	1	Startup
[base-topic]/identity/ port/n	Port name, port type	8	Startup
[base-topic]/config/ gateway	Configuration parameters, ip address etc.	1	Interval
[base-topic]/config/port/ n	Port mode, data storage, mapping, direction	8	Interval
[base-topic]/status/ gateway	Bus state, device diagnosis, master events	1	Interval
[base-topic]/status/port/ n	Port or channel diagnosis, IO-Link state, IO- Link Device events	8	Interval
[base-topic]/process/ gateway	All Digital IN/OUT	1	Interval
[base-topic]/process/ port/n	Digital IN/OUT per port, IOL-data, pdValid	8	Interval
[base-topic]/iold/port/n	IO-Link Device parameter	8	Interval

Table 16: Data model

An MQTT client which wants to subscribe to one or more of these topics can also use wildcards.

Full topic	Description
[base-topic]/identity/gateway	Receive only indentity objects for the gateway
[base-topic]/identity/#	Receive all data related to the identity domain
[base-topic]/status/port/5	Receive only status information for port number 5
[base-topic]/+/port/2	Receive information of all domains for port number 2
[base-topic]/process/port/#	Receive only process data for all ports
[base-topic]/config/#	Receive config data for the gateway and all ports.

Table 17: Use case examples

12.1.2.2 Publish topic

Overview of all publish JSON data for the defined topics:

Кеу	Data type
product_name	json_string
ordering_number	json_string
device_type	json_string
serial_number	json_string
mac_address	json_string
production_date	json_string
fw_name	json_string
fw_date	json_string
fw_version	json_string
hw_version	json_string
vendor_name	json_string
vendor_address	json_string
vendor_phone	json_string
vendor_email	json_string
vendor_techn_support	json_string
vendor_url	json_string
vendor_id	json_integer
device_id	json_integer

Table 18: Identity/gateway

Key	Data type	Range	Default value	Remarks
fieldbus_protocol	json_string	PROFINET, EtherNet/IP, EtherCAT®		
ip_address	json_string		192.168.1.1	
subnet_mask	json_string		255.255.255.0	
report_alarms	json_boolean		0.0.0.0	
report_ul_alarm	json_boolean	true / false	true	
report_do_fault_without_ul	json_boolean	true / false	false	
force_mode_lock	json_boolean	true / false	false	
web_interface_lock	json_boolean	true / false	false	
do_auto_restart	json_boolean	true / false	true	
fast_startup	json_boolean	true / false	false	PROFINET and EIP only

Table 19: Config/gateway

Key	Data type	Range	Default value	Remarks
protocol	json_string	wait_for_io_system wait_for_io_Connection failsafe connected error		
ethernet_port1	json_string	100_mbit/s_full 100_mbit/s 10_mbit/s_full 100_mbit/s		
ethernet_port2	json_string	100_mbit/s_full 100_mbit/s 10_mbit/s_full 100_mbit/s		
module_restarts	json_integer	0 4294967295		
channel_diagnosis	json_boolean	true / false		
failsafe_active	json_boolean	true / false		
system_voltage_fault	json_boolean	true / false		
actuator_voltage_fault	json_boolean	true / false		
internal_module_error	json_boolean	true / false		
simulation_active_diag	json_boolean	true / false		
us_voltage	json_integer	0 32		in Volts
ul_voltage	json_integer	0 32		in Volts
forcemode_enabled	json_boolean	true / false		

Table 20: Status/gateway

Key	Data type	Range	Default value	Remarks
Input_data	json_integer[]			
output_data	json_integer[]			

Table 21: Process/gateway

Key	Data type	Range	Default value	Remarks
port	json_integer	18		
type	json_string	digital_universal digital_input digital_Output io_link		
max_output_power_cha	json_string	2.0_mA 0.5_mA		
max_output_power_chb	json_string	2.0_mA 0.5_mA		
channel_cha	json_string	input/output input output io_link aux		
channel_chb	json_string	input/output input output io_link aux		

Table 22: Identity/port/1 .. 8

Key	Data type	Range	Default value	Remarks
port	json_integer	18		
direction_cha	json_string	input/output input output		
restart_mode_cha	json_string	Manual Auto		
restart_mode_chb	json_string	Manual Auto		
input_polarity_cha	json_string	NO NC		
input_polarity_chb	json_string	NO NC		
input_filter_cha	json_integer			ms
input_filter_chb	json_integer			ms
do_auto_restart_cha	json_boolean	true / false		
do_auto_restart_chb	json_boolean	true / false		

Table 23: Config/port/1 .. 8

Key	Data type	Range	Default value	Remarks
port	json_integer	18		
physical_state_cha	json_integer	0 1		
physical_state_chb	json_integer	0 1		
actuator_short_circuit_cha	json_boolean	true / false		
actuator_short_circuit_chb	json_boolean	true / false		
sensor_short_circuit	json_boolean	true / false		
current_cha	json_integer			mA
current_chb	json_integer			mA
current_pin1	json_integer			mA

Table 24: Status/port/1 .. 8

12.1.2.3 Command topic (MQTT Subscribe)

The main purpose of MQTT is to publish data from the device to a broker. This data can then be received by any subscriber who is interested in this data. But also the other way round is possible. The device can subscribe to a topic on the broker and is then able to receive data. This data can contain configuration or forcing data. This allows the user to fully control a device via MQTT only, without using other ways of communication like Web or REST.

If the configuration allows commands in general, the device subscribes to special Command topics on which it can receive commands from other MQTT clients. The Command topic is based upon the Base topic. It always has the following form:

[base-topic]/command

After the Command topic, there are fixed topics for different writeable objects. The data format of the MQTT payload is always JSON. It is possible to set only a subset of the possible objects and fields.

[...]/forcing

Use the Command topic [base-topic]/command/forcing for Force object data. The Force object can contain any of the following properties:

Property	Data type	Example values	Remarks
forcemode	boolean	true / false	Forcing Authority: on/off
digital	array (Table 26: Force object: Digital on page 89)		
iol	array (Table 27: Force object: IOL (IO-Link devices only) on page 89)		

Table 25: Force object properties

For the *Force object* properties digital and iol, there are several value specifications arrayed:

Property	Data type	Example values	Remarks
port	integer	1, 2, 5	
channel	string	"a", "b"	
force_dir	string	"out", "in", "clear"	
force_value	integer	0, 1	

Table 26: Force object: Digital

Property	Data type	Example values	Remarks
port	integer	0, 1, 5	
output	array[integer]	[55, 88, 120]	
input	array[integer]		Input-Simulation

Table 27: Force object: IOL (IO-Link devices only)

[...]/config

Use the Command topic [base-topic]/command/config for *Config* object data. The *Config object* can contain any of the following properties:

Property	Data type	Example values	Remarks
portmode	array (Table 29: Config object: Portmode on page 90)		
ip_address	string	"192.168.1.5"	
subnet_mask	string	"255.255.255.0"	
gateway	string	"192.168.1.100"	

Table 28: Config object properties

For the *Config object* property portmode, there are several value specifications arrayed:

Property	Data type	Example values	Remarks
port	integer	2	
channelA*	string	"dio", "di", "do", "iol", "off"	
channelB*	string	"dio", "di", "do", "iol", "off", "aux"	
inlogicA	string	"no", "nc"	
inlogicB	string	"no", "nc"	
filterA	integer	3	input filter in ms
filterB	integer	3	input filter in ms
autorestartA	boolean		
autorestartB	boolean		
iolValidation	integer	0 = NoCheck 1 = Type 1.0 2 = Type 1.1 3 = Type 1.1 BR 4 = Type 1.1 RES	
iolDeviceID	integer		for validation
iolVendorID	integer		for validation

Table 29: Config object: Portmode

^{*}channelA = Pin 4, channelB = Pin 2

[...]/reset

Use the Command topic [base-topic]/command/reset for Reset object data about restart and factory reset issues. The Reset object can contain any of the following properties:

Property	Data type	Example values	Remarks
factory_reset	boolean	true / false	
system_reset	boolean	true / false	

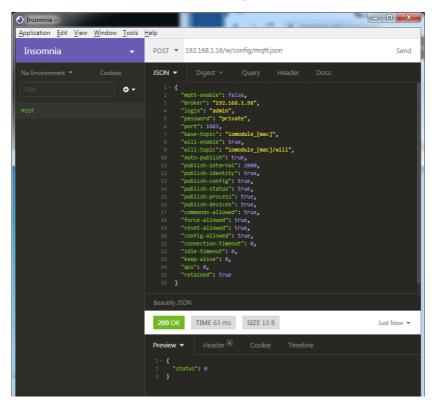
Table 30: Reset object properties

[...]/publish

Use the Command topic [base-topic]/command/publish for *Publish object* data.

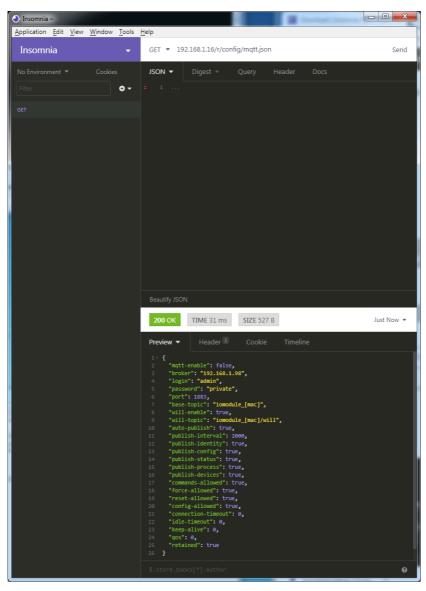
Trigger publish of all topics manually (can be used when auto publish is off or long interval is set).

12.1.3 MQTT configuration - Quick start guide



Attention: U.I. Lapp GmbH is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

12.1.3.1 MQTT configuration via JSON


- **1.** Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/
- 2. Configure MQTT:

POST: [IP-address]/w/config/mqtt.json

3. Read MQTT:

GET: [IP-address]/r/config/mqtt.json

12.2 OPC UA

OPC UA functions are **only** applicable for the following UNITRONIC® ACCESS variants:

▶ MP08IOLA08DIO

OPC Unified Architecture (OPC UA) is a platform-independent standard with a service-oriented architecture for communication in and with industrial automation systems.

The OPC UA standard is based on the client-server principle and lets machines and devices, regardless of any preferred field bus, communicate horizontally among each other as well as vertically to the ERP system or the cloud. UNITRONIC® ACCESS provides an OPC UA server on field device level, with which an OPC UA client can connect for information exchange secure in transmission.

For OPC UA, we comply (apart from the exceptions listed below) with the IO-Link Companion Specification, which can be downloaded from https://lapp.com or directly from io-link.com.

Attention: When using OPC UA, the MQTT protocol must be disabled.

Feature	Support
Managing IODDs (chapter 6.1.6 in the specification)	Not supported
Mapping IODD information to OPC UA ObjectTypes (chapter 6.3 in the specification)	Not supported
IOLinkIODDDeviceType (chapters 7.2 ff. in the specification)	Not supported
ObjectTypes generated based on IODDs (chapters 7.3 ff. in the specification)	Not supported
Creation of Instances based on ObjectTypes generated out of IODDs (chapter 7.4 in the specification)	Not supported
IODDManagement Object (chapter 8.2 in the specification)	Not supported
RemovelODD Method (chapter 8.3 in the specification)	Not supported

Table 31: Non-supported OPC UA features according to the IO-Link Companion Specification

12.2.1 OPC UA configuration

In **delivery state**, OPC UA functions are **disabled**. The OPC UA Server can be configured either using the Web interface or directly via a JSON Object sent in an HTTP/HTTPS request. For more information see OPC UA configuration - Quick start guide on page 98.

The configuration URL is:

http://[ip-address]/w/config/opcua.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/opcua.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. All configuration changed applies only after a device restart.

There are the following configuration elements (default values in bold):

Element	Data type	Description	Example data
port	integer	Server port for the OPC UA server.	0, 4840 , 0xFFFF
opcua-enable	boolean	Master switch for the OPC UA server.	true / false
anon-allowed	boolean	If true, anonymous login is allowed.	true / false
commands-allowed	boolean	Master switch for OPC UA commands. If false there will be no writeable OPC UA objects.	true / false
force-allowed	boolean	If true, the device accepts force commands via OPC UA.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via OPC UA.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via OPC UA.	true / false

Table 32: OPC UA Configuration

All configuration elements are optional and do not need a specific order. Not every element is required to be sent. This means that only configuration changes will be taken over.

Optional: The configuration parameters of OPC UA can be set directly via the Web interface. It is possible to download the Web interface for sharing with other devices.

Response:

The resulting response is a JSON object with a status field. Status should be "0" if no error occurred and "-1" if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element which caused the error, and a field "Message" for the error message.

Examples:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

12.2.2 OPC UA address space

OPC UA provides different services on the UNITRONIC® ACCESS devices with which a client can navigate through the hierarchy of the address space and read or write variables. In addition, the client can monitor up to 10 attributes from the address space for value changes.

A connection to an OPC UA server is established via the endpoint URL:

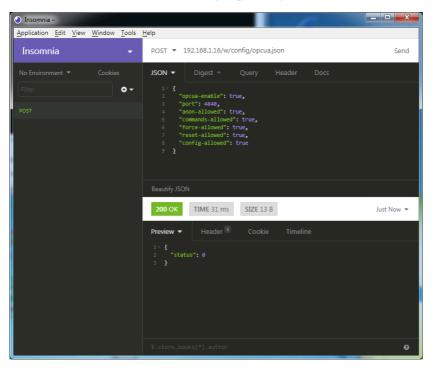
```
opc.tcp://[ip-address]:[port]
```

Various device data such as MAC address, device settings, diagnostics or status information can be read via *Identity objects*, *Config objects*, *Status objects* and *Process objects*.

Command objects can be read and written. This makes it possible, for example, to transfer new network parameters to the device, to use Force Mode or to reset the entire device to its factory settings.

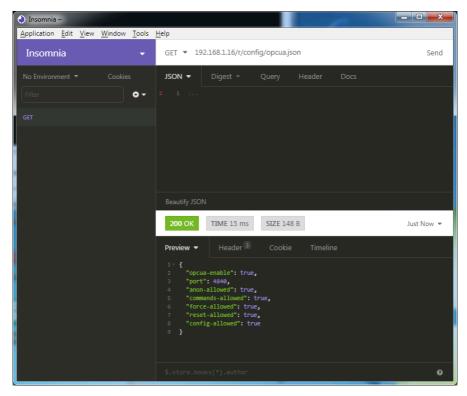
The following figures illustrate the OPC UA address space of the UNITRONIC® ACCESS devices. The objects and information displayed depend on the device variant used.

12.2.3 OPC UA configuration - Quick start guide



Attention: U.I. Lapp GmbH is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

12.2.3.1 OPC UA configuration via JSON


- **1.** Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/
- 2. Configure OPC UA:

POST: [IP-address]/w/config/opcua.json

3. Read OPC UA:

GET: [IP-address]/r/config/opcua.json

12.3 REST API

The Representational State Transfer – Application Programming Interface (REST API) is a programmable interface which uses HTTP/HTTPS requests to GET and POST data. This enables the access to detailed device information.

For all UNITRONIC® ACCESS variants, the REST API can be used to read the device status. For the UNITRONIC® ACCESS multi-protocol variants, the REST API can also be used to write configuration and forcing data.

There are two different REST API standards you can use for the requests:

1. A standardized REST API that has been specified by the IO-Link Community and is described separately:

```
JSON Integration 10222 V100 Mar20.pdf
```

Please download the file from https://lapp.com or directly from io-link.com.

Attention: Consider the following table to get an overview of the supported features of the IO-Link specification:

Feature		Supported
Gateway	GET /identification	Yes
	GET /capabilities	Yes
	GET /configuration	Yes
	POST /configuration	Yes
	POST /reset	Yes
	POST /reboot	Yes
	GET /events	Yes
Master	GET /masters	Yes
	GET /capabilities	Yes
	GET /identification	Yes
	POST /identification	Yes

Feature		Supported
Port	GET /ports	Yes
	GET /capabilities	Yes
	GET /status	Yes
	GET /configuration	Yes
	POST /configuration	Yes
	GET /datastorage	Yes
	POST /datastorage	Yes
Devices	GET /devices	Yes
	GET /capabilities	Yes
	GET /identification	Yes
	POST /identification	Yes
	GET /processdata/value	Yes
	GET /processdata/getdata/value	Yes
	GET /processdata/setdata/value	Yes
	POST /processdata/value	Yes
	GET /parameters	Not supported
	GET /parameters/{index}/subindices	Not supported
	GET /parameters/{parameterName}/subindices	Not supported
	GET /parameters/{index}/value	Not supported
	GET /parameters/{index}/subindices/{subindex}/value	Not supported
	GET /parameters/{parameterName}/value	Not supported
	GET /parameters/{parameterName}/subindices/ {subParameterName}/value	Not supported
	POST /parameters/{index}/value	Not supported
	POST /parameters/{parameterName}/value	Not supported
	POST /parameters/{index}/subindices/{subindex}/value	Not supported
	POST /parameters/{parameterName}/subindices/ {subParameterName}/value	Not supported
	POST /blockparametrization	Yes
	GET /events	Yes

Feature		Supported
IODD	GET /iodds	Not supported
	POST /iodds/file	Not supported
	DELETE /iodds	Not supported
	GET /iodds/file	Not supported

Table 33: Support of REST API features according to the IO-Link specification

2. A customized LAPP REST API that is described in the following chapters.

12.3.1 Standard device information

Request method: http GET

Request URL: <ip>/info.json

Parameters n.a.

Response format

The goal of the "Standard device information" request is to get a complete snapshot of the current device status. The format is JSON. For IO-Link devices, all ports with connected IO-Link device information are included.

JSON

12.3.2 Structure

Name	Data type	Description	Example
name	string	Device name	"MP08IOLA08DIO
order-id	string	Ordering number	"381166717"
fw-version	string	Firmware version	"V.11.2.0.0 - 08.08.2024"
hw-version	string	Hardware version	"V.1.00"
mac	string	MAC address of the device	"7C F9 5C 4C CC CE"
bus	number	0 = No connection 1 = Connection with PLC	1
failsafe	number	0 = Normal operation 1 = Outputs are in failsafe	0
ip	string	IP address of the device	
snMask	string	Subnet Mask	
gw	string	Default gateway	
rotarys	array of numbers (3)	Current position of the rotary switches: Array element 0 = x1 Array element 1 = x10 Array element 2 = x100	
ulPresent	boolean	True, if there is a UL voltage supply detected within valid range	
usVoltage_mv	number	US voltage supply in mV	
ulVoltage_mv	number	UL voltage supply in mV (only available for devices with UL supply)	
inputs	array of numbers (2)	Real state of digital inputs. Element 0 = 1 Byte: Port X1 Channel A to Port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to Port X8 Channel B	\[128,3\]
output	array of numbers (2)	Real State of digital outputs. Element 0 =1 Byte: Port X1 Channel A to port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to port X8 Channel B	\[55,8\]

Name	Data type	Description		Example
consuming	array of numbers (2)	Cyclic data from PLC to device		
producing	array of numbers (2)	Cyclic data from device to PLC		
diag	array of numbers (4)	Diagnostic		
fieldbus	FIELDBUS Object			
FIELDBUS Object				
fieldbus_name	string	Currently u	sed fieldbus	
state	number	Fieldbus state		
state_text	number	Textual representation of fieldbus state: 0 = Unknown 1 = Bus disconnected 2 = Preop 3 = Connected 4 = Error 5 = Stateless		
forcing	FORCING Object	Information about the forcing state of the device		
channels	Array of CHANNEL (16)	Basic information about all input/output channels		

Name	Data type	Description	Example
iol	IOL Object	Contains all IO-Link related information such as events, port states, device parameters.	
iol/diagGateway	array of DIAG	Array of currently active device/ gateway related events	
iol/diagMaster	array of DIAG	Array of currently active IOL-Master related events	
iol/ports	array of PORT (8)	Contains one element for each IO-Link port	
CHANNEL Object			
name	string	Name of channel	
type	number	Hardware channel type as number: 0 = DIO 1 = Input 2 = Output 3 = Input/Output 4 = IO-Link 5 = IOL AUX 6 = IOL AUX with DO 7 = IOL AUX with DO. Can be deactivated. 8 = Channel not available	
type_text	string	Textual representation of the channel type	
config	number	Current configuration of the channel: 0 = DIO 1 = Input 2 = Output 3 = IO-Link 4 = Deactivated 5 = IOL AUX	
config_text	string	Textual representation of the current config	
inputState	boolean	Input data (producing data) bit to the PLC	
outputState	boolean	Output data bit to the physical output pin	

Name	Data type	Description	Example	
forced	boolean	True, if the output pin of this channel is forced		
simulated	boolean	True, if the input value to the PLC of this channel is simulated		
actuatorDiag	boolean	True, if the output is in short circuit / overload condition		
sensorDiag	boolean	True, if the sensor supply (Pin 1) is in short circuit / overload condition		
maxOutputCurrent _mA	number	Maximum output current of the output in mA		
current_mA	number	Measured current of the output in mA (if current measurement is available)		
voltage_mV	number	Measured voltage of this output in mV (if voltage measurement is available)		
PORT Object				
port_type	string	Textual representation of the IO-Link port type		
iolink_mode	number	Current port mode: 0 = Inactive 1 = Digital output 2= Digital input 3 = SIO 4 = IO-Link		
iolink_text	string	Textual representation of the current port mode	"Digital Input"	
aux_mode	number	Indicates the configured mode for the Pin 2: 0 = No AUX 1 = AUX output (always on) 2 = Digital output (can be controlled by cyclic data) 3 = Digital input		
aux_text	string	Textual representation of the current aux mode	"AUX Output"	
cq_mode	number	Port mode according to IOL specification		
iq_mode	number	Pin2 mode according to IOL specification		

Name	Data type	Description	Example
port_status	number	Port status according to IOL specification	
ds_fault	number	Data storage error number	
ds_fault_text	string	Textual data storage error.	
device	DEVICE Object	IO-Link device parameters. → Null if no IO-Link communication active	
diag	array of DIAG (n)	Array of port related events	
DIAG Object			
error	number	Error code	
source	string	Source of the current error.	"device" "master"
eventcode	number	Event code according to IO-Link specification	
eventqualifier	number	Event qualifier according to IO-Link specification	
message	string	Error message	"Supply Voltage fault"
DEVICE Object		Standard parameters of the IOL- Device	
device_id	number		
vendor_id	number		
serial	string		
baudrate	string	Baudrate (COM1,2,3)	
cycle_time	number	Cycle time in microseconds	
input_len	array of numbers (n)	IOL input length in bytes	
output_len	array of numbers (n)	IOL output length in bytes	
input_data	array of numbers (n)	IOL input data	
output_data	array of numbers (n)	IOL output data	
pd_valid	number	"1", if IOL input data is valid	
pdout_valid	number	"1", if IOL output data is valid	
FORCING Object		Forcing information of the device	
forcingActive	boolean	Force mode is currently active	

Name	Data type	Description	Example
forcingPossible	boolean	True, if forcing is possible and force mode can be activated	
ownForcing	boolean	True, if forcing is performed by REST API at the moment	
forcingClient	string	Current forcing client identifier	
digitalOutForced	array of numbers (2)	The force values of all 16 digital output channels.	
digitalOutMask	array of numbers (2)	The forcing mask of all 16 digital output channels.	
digitalInForced	array of numbers (2)	The force values of all 16 digital input channels.	
digitalInMask	array of numbers (2)	The forcing mask of all 16 digital input channels.	

12.3.3 Configuration and forcing

Method: POST

URL: <ip>/w/force.json

Parameters: None

Post-Body: JSON Object

Property	Data type	Example values	Description
forcemode	boolean	true / false	Forcing authority on/off
portmode	array (Port mode object)		
digital	array (Digital object)		
iol	array (IOL object)		

Table 34: Root object

Property	Data type	Example values	Remarks
port	integer	07	
channel	string	"a","b"	optional default is "a"
direction	string	"dio","di","do","iol", "off", "aux"	
aux	string	"dio","di","do","iol", "off", "aux"	IOL only, but optional
inlogica	string	"no","nc"	
inlogicb	string	"no","nc"	
inputlatch	bool	true / false	enable/disable input latch, optional
inputext	integer	Depends on the fieldbus: ■ eip: 0 (off) - 255 (ms) ■ ethercat: 0 (off) - 255 (ms) ■ pns: 0 (off) - 255 (ms) ■ cclink: 0 (off) - 255 (ms) ■ mbtcp: 0 (off) - 255 (ms)	set input extension, optional
inputfilter	integer	0 255	set input filter, optional

Table 35: Port mode object

Property	Data type	Example values	Remarks
port	integer	07	
channel	string	"a","b"	
force_dir	string	"phys_out","plc_in","clear"	optional default is "phys_out"
force_value	integer	0,1	

Table 36: Digital object

Property	Data type	Example values	Remarks
port	integer	07	
output	array[integer] or null to clear forcing	[55,88,120]	Output forcing
input	array[integer] or null to clear forcing	[20,0,88]	Input simulation to PLC

Table 37: IOL object

12.3.4 Reading and writing ISDU parameters

The *Indexed Service Data Unit* (ISDU) provides a highly flexible message format, which can contain single or multiple commands.

UNITRONIC® ACCESS IOL-Masters with IIoT support reading and writing ISDU parameters from connected IOL-Devices. It is possible to do this as a bulk transfer by reading and writing of multiple ISDU parameters via a single request.

12.3.4.1 Reading ISDU

Method: POST

URL: <ip>/r/isdu.json

Parameters: port (0-7)

Example: 192.168.1.20/r/isdu.json?port=5

Post-Body: JSON array of read ISDU object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index to be read
subix	integer	0-INT8	Subindex to be read

Table 38: Read ISDU object

Property	Data type	Example values	Remarks
status	integer	0, -1	0 = no error, -1= an error occured
message	string		Error Message if error occured
data	array (Read ISDU data object)		data, if no error occured. otherweise null

Table 39: Read ISDU response object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index that was read
subix	integer	0-INT8	Subindex that was read
status	integer	0, -1	0 = no error, -1= an error occured
eventcode	integer		IOL eventcode if status is -1
data	array[integer]		data, if no error occured. otherweise null

Table 40: Read ISDU data object

12.3.4.2 Writing ISDU

Method: POST

URL: <ip>/w/isdu.json

Parameters: port (0-7)

Post-Body: JSON array of write ISDU object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index to be read
subix	integer	0-INT8	Subindex to be read
data	array[integer]		Data to be written

Table 41: Write ISDU object

Response: Write ISDU response object

Property	Data type	Example values	Remarks
status	integer	0, -1	0 = no error, -1= an error occured
message	string		Error Message if error occured
data	array (Write ISDU data object)		data, if no error occured. otherweise null

Table 42: Write ISDU response object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index that was written
subix	integer	0-INT8	Subindex that was written
status	integer	0, -1	0 = no error, -1= an error occured
eventcode	integer		IOL eventcode if status is -1

Table 43: Write ISDU data object

Attention: For UNITRONIC® ACCESS device variants with HTTPS feature, https:// must be used in front of <ip> for every REST API.

12.3.5 Upload and process an IODD file

The REST API supports IODD file upload to the IO-Link Master.

Perform the following work steps:

1. Check file upload status

Send request: GET file_upload

Purpose: Get file upload status to check if there is another upload in progress.

Expected response:

```
{
    "status": 0,
    "progress": 0,
    "name": "",
    "action": 0,
    "upid": 0,
    "errid": 0,
    "errstr": "",
    "pschr": 0
}
```

Check the status ID. If status is '0', you can start a new iodd upload process. For reference, see tables Table 44: Status ID and meaning on page 118 and Table 45: Error ID and meaning on page 119. Proceed with the next step.

2. Initiate file upload

Send request: POST file_upload

Content-Type: application/json

Purpose: Send details about the file to be uploaded.

Expected response:

The upload id (upid) is a number used by the backend to identify a specific upload and parsing process. It has to be used as a query parameter in the following steps.

The action will allways be iodd.

The size is the total size of the file in bytes.

The correct content type has to be set.

Note: Remember the upload ID (upid) for subsequent steps

3. Upload file content

Send request: POST file_upload?upid=<value> \rightarrow Use the upid value from Step 2.

Content-Type: application/octet-stream \rightarrow The correct content type has to be set

Purpose: Send file or file chunks (max chunk size: 64KB).

Attention: Sending file chunks bigger than 64KB will result in unresponsive behavior.

4. Monitor upload status

Send request: GET file_upload?upid=<value> \rightarrow Use the upid value from Step 2.

Purpose: Get the current file upload status.

Expected response:

```
{
"status": <status id value>,
    "progress": <percentage>,
    "name": "<file name given in step 2>",
    "action": "iodd",
    "upid": <upload id chosen in step 2>,
    "errid": <error id>,
    "errstr": "",
    "pschr": <count of parsed characters>
}
```

Repeat this step until the status becomes 'idle'. For some states this request triggers the necessary transitions in the internal state machine.

Only after the backend is sure that the correct client identified by its upid received the action finished or error state it will transition to the next one, the idle state.

The fields now show values depending on what was sent in step 2 and on the current process status.

Status ID	Status
0	File upload idle. New upload can be triggered.
1	File upload started.
2	File upload in progress.
3	File upload finished.
4	Error during file upload.
5	File upload timeout.
6	IODD parsing started.
7	IODD parsing finished.
8	IODD parsing error.
9	IODD parsing canceled.

Table 44: Status ID and meaning

ID	Error
0	No error.
1	Json parsing error.
2	Json type error.
4	Upload error.
5	File opening error.
6	File writing error.
7	Thread creating error.
8	Error during file copy.
9	Upload timeout.
10	Upload size exceeded.
11	Unknown action.
12	No upload id.
13	IODD paasing error.
14	Internal error.
15	IODD store full. Delete an IODD before uploading a new one.
16	Internal error.
17	IODD file CRC error.
18	Standard IODD file crc error.
19	No available space for parsing.

Table 45: Error ID and meaning

12.3.6 Example: Reading ISDU

ISDU read request

Response

12.3.7 Example: Writing ISDU

ISDU write request

Response

12.4 CoAP server

The CoAP server functions are **only** applicable for the following UNITRONIC® ACCESS variants:

▶ MP08IOLA08DIO

The **Co**nstrained **A**pplication **P**rotocol (CoAP) is a specialized Internet application protocol for constrained networks such as lossy or low power networks. CoAP is useful especially in M2M (Machine to Machine) communication and can be used to translate simplified HTTP/HTTPS requests of low speed networks.

CoAP is based on the Server-Client principle and a service layer protocol that lets nodes and machines communicate with each other. The UNITRONIC® ACCESS multi-protocol variants provide CoAP server functionalities via a REST API interface over UDP.

12.4.1 CoAP configuration

In delivery state, CoAP functions are *disabled*. The CoAP server can be configured either using the Web interface or directly via a JSON object sent in an HTTP/HTTPS request. For more information see chapter CoAP configuration - Quick start guide on page 125.

The configuration URL is:

http://[ip-address]/w/config/coapd.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/coapd.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. The configuration changes apply only after a device restart.

The following configuration elements are available (default values in bold):

Element	Data type	Description	Example data
enable	boolean	Master switch for the CoAP server	true / false
port	integer (0 to 65535)	Port of the CoAP server	5683

Table 46: CoAP configuration

CoAP response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred, and "-1" if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element that caused the error, and of a field "Message" for the error message.

Examples:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

12.4.2 REST API access via CoAP

A connection to the CoAP server running on the UNITRONIC® ACCESS multi-protocol variants can be established via the following URL:

```
coap://[ip-address]:[port]/[api]
```

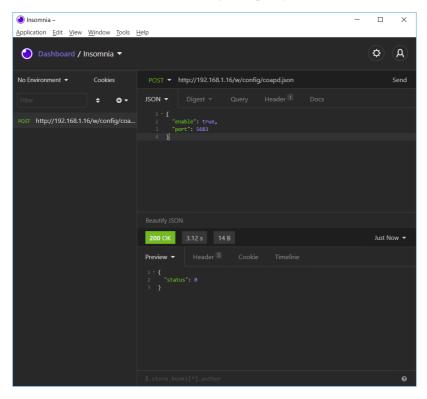
For UNITRONIC® ACCESS, the following REST API Requests (JSON format) can be accessed via a CoAP endpoint:

Туре	API	Note
GET	/r/status.lr	
GET	/r/system.lr	
GET	/info.json"	
GET	/r/config/net.json	
GET	/r/config/mqtt.json	
GET	/r/config/opcua.json	
GET	/r/config/coapd.json	
GET	/r/config/syslog.json	
GET	/contact.json	
GET	/fwup_status	
GET	/iolink/v1/gateway/identification	
GET	/iolink/v1/gateway/capabilities	
GET	/iolink/v1/gateway/configuration	
GET	/iolink/v1/gateway/events	
GET	/iolink/v1/masters	
GET	/iolink/v1/masters/1/capabilities	
GET	/iolink/v1/masters/1/identification	
GET	/iolink/v1/masters/1/ports	
GET	/iolink/v1/masters/1/ports/{port_number}/capabilities	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/masters/1/ports/{port_number}/status	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/masters/1/ports/{port_number}/configuration	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/devices/master1port{port_number}/identification	This API is available for all 8 ports. {port_number} should be between "1" and "8".

Туре	API	Note
GET	/iolink/v1/devices/master1port{port_number}/capabilities	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/devices/master1port{port_number}/processdata/ getdata/value	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/devices/master1port{port_number}/events	This API is available for all 8 ports. {port_number} should be between "1" and "8".

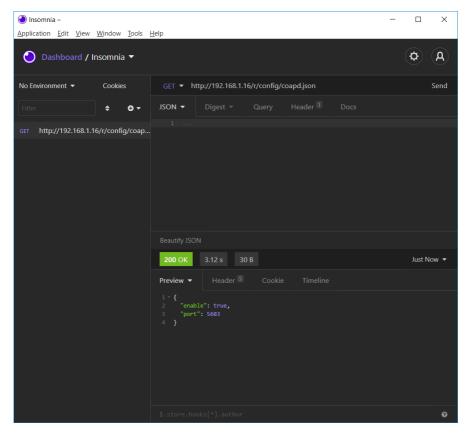
Table 47: REST API access via CoAP

12.4.3 CoAP configuration - Quick start guide



Attention: U.I. Lapp GmbH is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

12.4.3.1 CoAP configuration via JSON


- **1.** Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/
- 2. Configure CoAP:

POST: [IP-address]/w/config/coapd.json

3. Read CoAP configuration:

GET: [IP-address]/r/config/coapd.json

12.5 Syslog

Syslog functions are **only** applicable for the following UNITRONIC® ACCESS variants:

► MP08IOLA08DIO

The UNITRONIC® ACCESS multi-protocol variants provide a Syslog client which can connect with a configured Syslog server and is able to log messages.

Syslog is a platform-independent standard for logging messages. Each message contains a timestamp as well as information about the severity level and the subsystem. The Syslog protocol RFC5424 is based on the Server-Client principle and lets machines and devices send messages in the network and collect them centrally. (For more details on the used syslog standard, please refer to https://datatracker.ietf.org/doc/html/rfc5424.)

UNITRONIC® ACCESS supports the storage of 256 messages in a ring buffer which are sent to the configured Syslog server. When the ring is full with 256 messages, the oldest message is always replaced by the newly arriving messages. All messages can be saved on the Syslog server. The Syslog client of the IO-Link Master will not store any message permanently.

12.5.1 Syslog configuration

In **delivery state**, Syslog functions are **disabled**. The Syslog client can be configured either using the Web interface or directly via a JSON object sent in an HTTP/HTTPS request. For more information see chapter Syslog configuration - Quick start guide on page 130.

The configuration URL is:

http://[ip-address]/w/config/syslog.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/syslog.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided

elements will be changed. The configuration changes apply only after a device restart.

The following configuration elements are available (default values in bold):

Element	Data type	Description	Example data
syslog-enable	boolean	Master switch for the Syslog client	true / false
global-severity	integer	Severity level of Syslog client 0 - Emergency 1 - Alert 2 - Critical 3 - Error 4 - Warning 5 - Notice 6 - Info 7 - Debug The client will log all messages of severity according to the setting, including all below levels.	0/1/2/ 3 /4/5/6/7
server-address	string (IP address)	IP address of the Syslog server	192.168.0.51 (Default: null)
server-port	integer (0 to 65535)	Server port of the Syslog server	514
server-severity	integer (0 to 7)	Severity level of Syslog server 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug	0/1/2/ 3 /4/5/6/7

Table 48: Syslog configuration

Syslog response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred, and "-1" if there is an error.

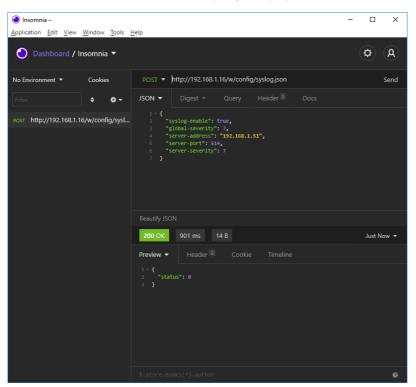
In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element that caused the error, and of a field "Message" for the error message.

Examples:

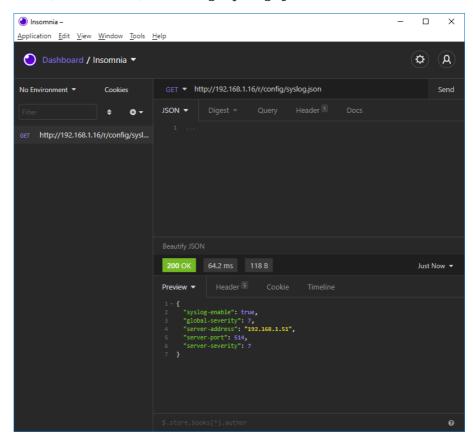
```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON object"}]}
```

12.5.2 Syslog configuration - Quick start guide



Attention: U.I. Lapp GmbH is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

12.5.2.1 Syslog configuration via JSON


- **1.** Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/
- 2. Configure Syslog:

POST: [IP-address]/w/config/syslog.json

3. Read Syslog configuration:

GET: [IP-address]/r/config/syslog.json

12.6 Network Time Protocol (NTP)

The NTP function is **only** applicable for the following UNITRONIC® ACCESS variant:

▶ MP08IOLA08DIO

The UNITRONIC® ACCESS multi-protocol variants provide an NTP client (version 3) which can connect with a configured NTP server and is able to synchronize the network time at a configurable interval.

NTP is a network protocol which uses UDP datagrams to send and receive timestamps in order to synchronize with a local clock. The NTP protocol RFC1305 is based on the Server-Client principle and exclusively supplies the synchronization with Coordinated Universal Time (UTC). (For more details on the used NTP standard, please refer to https://datatracker.ietf.org/doc/html/rfc1305.)

12.6.1 NTP configuration

In **delivery state**, the NTP client is **disabled**. The NTP client can be configured either using the Web interface or directly via a JSON object sent in an HTTP/HTTPS request. For more information see chapter NTP configuration - Quick start guide on page 134.

The configuration URL is:

http://[ip-address]/w/config/ntpc.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/ntpc.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. The configuration changes apply only after a device restart.

Element	Data type	Description	Example data
NTP client state	boolean	Master switch for the NTP client	true / false
Server address	string	IP address of the NTP server	192.168.1.50
Server port	integer	Port of the NTP server	123
Update interval	integer	Interval at which the client will connect with the configured NTP server (see table row "Server address").	1/2/10/ 60
		Note: This value is in seconds.	

The following configuration elements are available (default values in bold):

Table 49: NTP configuration

NTP response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred, and "-1" if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the configuration element that caused the error, and of a field "Message" for the error message.

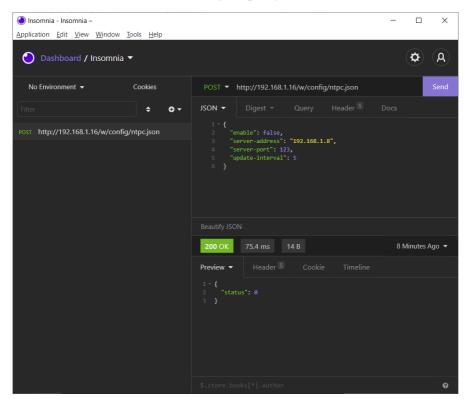
Examples:

```
{"status": -1, "error": [{"Element": "ntpc-enable", "Message": "Boolean
expected"}]}

{"status": 0}

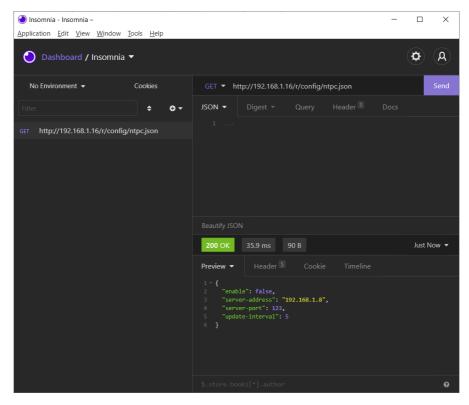
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

12.6.2 NTP configuration - Quick start guide



Attention: U.I. Lapp GmbH is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

12.6.2.1 NTP configuration via JSON

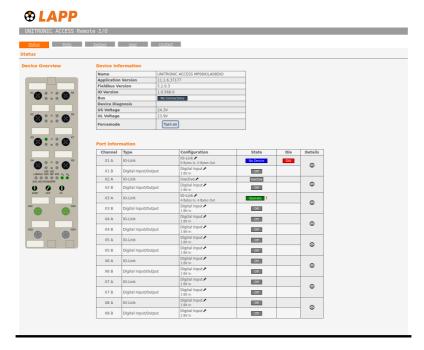

- **1.** Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/
- 2. Configure NTP:

POST: [IP-address]/w/config/ntpc.json

3. Read NTP configuration:

GET: [IP-address]/r/config/ntpc.json

13 The integrated Web server


All device variants are equipped with an integrated Web server which makes functions for the device configuration and the display of status and diagnostic information available via a Web interface.

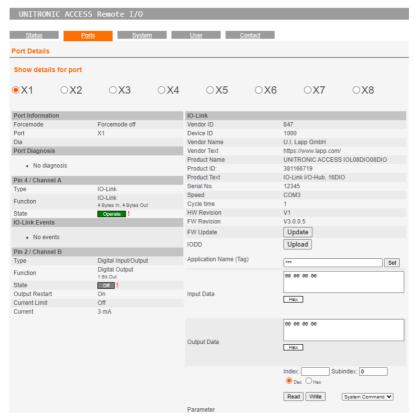
The Web interface provides an overview of the configuration and status of the device. It is also possible to use the Web interface to trigger a reboot, reset to the factory defaults, or perform a firmware update.

Enter "http://" or "https://" followed by the IP address, such as "http://192.168.1.5", in your Web browser's address bar. If the status page of the device is not displayed, check your browser and firewall settings.

13.1 UNITRONIC® ACCESS MP08... variants

13.1.1 The Status page

The status page provides a quick overview of the current state of the device.


The left side shows a graphical representation of the module with all its LEDs and the positions of the rotary encoding switches.

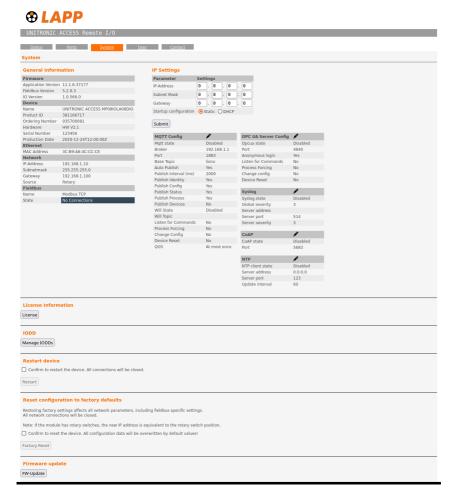
The right side shows the "Device Information" table with some basic data for the module; for example, the variant, the cyclic communication status and a diagnostic indicator. The indicator shows whether diagnostics for the module exist.

The "Port Information" table shows the configuration and state of the I/O ports.

13.1.2 The Ports page


The page shows detailed port information. In the field **Port Diagnosis**, incoming and outgoing diagnostics are displayed as clear text. **Pin 2** and **Pin 4** contain information about the configuration and state of the port. For IO-Link ports, additional information relating to the connected sensor and the process data is displayed.

13.1.2.1 IODD upload


The button **UPLOAD** allows uploading an IODD file into the module, regardless of the device for which the IODD is designed.

The maximum number of IODDs is limited due to storage space. If there is no more space for a new IODD left, there will be a message of the detected error.

With the help of the IODD management page ("System" page), not used IODDs can be deleted. If there is already a matching IODD stored in the system for the connected IO-Link device, the button **CONFIGURE** is shown. By clicking this button, the page "IODD - Device configuration" will open, where the IO-Link device can be configured.

13.1.3 The System page

The System page shows the basic information for the module like Firmware version, Device information, Ethernet, Network and Fieldbus information.

IP Settings

Use this parameter to change the current IP address of the module.

For PROFINET, this is only useful during commissioning. Normally, the PLC sets the IP address at start-up by detecting the PROFINET module via its device name.

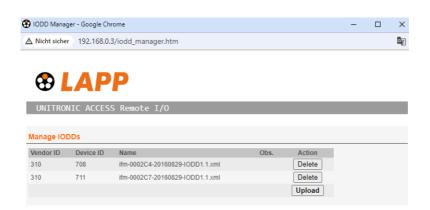
13.1.3.1 License

This button opens a new window with Open Source Software information used in this product.

13.1.3.2 Config upload/download

With this feature, settings configured via the Web interface can be stored outside the I/O-Device (Download) for later Upload, e.g. after an I/O-Device change.

The following settings will be stored inside this file:


Scope	Туре	Setting	Options	Details
Gateway		deviceID		To check device identity.
	iol	applicationSpecificTag		
	iol	functionTag		
	iol	locationTag		
		forcing		Enable/disable forcing
		channel_count		
		network configuration	ip	
]	snMask	
		1	gw	
			source	1 - manual 2 - dhcp 3 - rotary 4 - dcp
Channel		index		channel index starting from 0
		channel configuration		0 - DIO 1 - IN 2 - OUT 3 - IOL 4 - AUX 5 - SAFIN 6 - SAFOUT
	iol	forced		
	iol	simulated		
	iol	force values		array
	iol	simulated		
	iol	sim values		array
	iol	validation	option vendorld deviceld	validation and backup
	digital	force		

Scope	Туре	Setting	Options	Details
	digital	force value		
	digital	simulate		
	digital	sim value		
	digital	inputPolarity		
	digital	autorestart mode		
	digital	inputFilter100us		
	digital	currentLimit		
	digital	outputRestartMode		
	digital	failsafeMode		
	digital	surveillanceTimeouMs		
OPC UA		opcua	opcua-enable	
		1	port	
		1	anon-allowed	
			commands- allowed	
]	force-allowed	
]	reset-allowed	
]	config-allowed	
	digital		dcu-allowed	
MQTT		mqtt	mqtt-enable	
]	broker	
			login	
			password	
]	port	
]	base-topic	
]	will-enable	
]	will-topic	
		1	auto-publish	
		1	publish-interval	
		1	publish-identity	

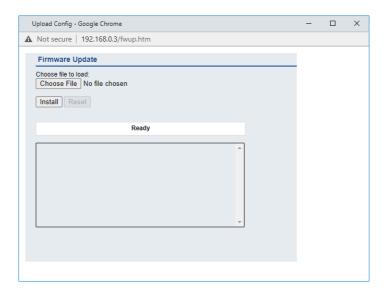
Scope	Туре	Setting	Options	Details
			publish-config	
]	publish-status	
			publish-process	
	iol		publish-devices	
			commands- allowed	
]	force-allowed	
			reset-allowed	
			config-allowed	
			qos	
SYSLOG		syslog	syslog-enable	
			global-severity	
			server-address	
			server-port	
			server-severity	
COAP		соар	enable	
			port	
NTP		ntpc	enable	
			server-address	
			server-port	
			update-interval	

13.1.3.3 IODD

The button **Manage IODDs** opens a new page for the IODD management on the I/O-Device. IODDs can be uploaded or deleted on this page, and all uploaded IODDs are listed here. For configuring connected IO-Link devices, open the related "Ports" page.

13.1.3.4 Restart device

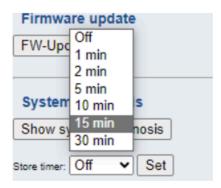
The module initializes a software reset.


13.1.3.5 Reset configuration to factory defaults

The module restores to the default factory settings.

13.1.3.6 Firmware update

The module initializes a Firmware update.


For a firmware update choose the *.ZIP container available on our website or ask our support team. Afterwards follow the instructions shown on your screen.

13.1.3.7 System diagnosis

All Syslog messages will be displayed in a ring buffer with 512 entries. By activation of the 'Store timer', the buffer content will be stored nonvolatile in the selected interval of 1, 2, 5, 10, 15 or 30 minutes.

The default value is 'Off' (no nonvolatile storage of system diagnosis ring buffer).

13.1.4 The User page

nagement of the Web inter

The User page provides the user management of the Web interface. New users with access rights "Admin" or "Write" can be added here. For security reasons please change the default admin password immediately after configuring the device.

Default user login data:

▶ User: admin

Password: private

13.2 UNITRONIC® ACCESS single-protocol PN0.../EIP0.../EC0.../MTCP0.../CCL0... variants

13.2.1 The System page

The System page shows the basic information for the module like Firmware version, Device information, Ethernet, Network and Fieldbus information.

Restart Device

The module initializes a software reset.

Reset to Factory Settings

The module restores to the default factory settings.

IP Settings

Use this parameter to change the current IP address of the module.

For PROFINET, this is only useful during commissioning. Normally, the PLC sets the IP address at start-up by detecting the PROFINET module via its device name.

Firmware Update

The module initializes a Firmware update.

For a firmware update choose the *.ZIP container available on our website or ask our support team. Afterwards follow the instructions shown on your screen.

14 IODD

IODD functions are **only** applicable for the following device variants:

▶ MP08IOLA08DIO

The **IO** Device Description (IODD) is a set of files formally describing an IO-Link Device. The IODD is created by the vendor and is mandatory for each IO-Link Device.

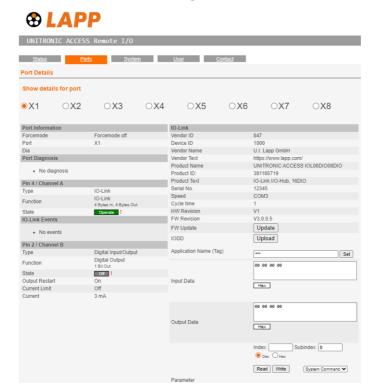
LAPP UNITRONIC® ACCESS IO-Link Masters with the "IODD on Module" functionality are ready to use IODDs in order to make the IO-Link Device configuration much more easier and the process data human readable in a better way. IODDs can be uploaded via the Web Interface and remanently stored on the IO-Link Master afterwards.

If a corresponding IO-Link Device is connected, the stored IODD is used to provide a user friendly configuration page, where all parameters of the device can be viewed and edited. Additionally, according to the IODD, the process data will also be formatted and displayed to the user.

14.1 IO-Link Device parameters and ISDU requests

Every IO-Link Device provides parameters that can be read and written via the special IO-Link service ISDU (Indexed Service Data Unit).

Every parameter is addressed by an index. Sub-indices are possible but optional. Some parameters (most of them read-only) are mandatory for IO-Link devices an can be found always on the same indices (See *Table B.8* in the *IO-Link Interface and System Specification*: https://io-link.com/share/Downloads/Package-2020/IOL-Interface-Spec 10002 V113 Jun19.pdf).


A vendor can use additional parameters and therefore more indices for their devices in order to provide additional configuration options. These vendor specific parameters can be described in an IODD. The "IODD on Module" feature of the UNITRONIC® ACCESS IO-Link Masters can read and parse this information out of an IODD and use it to provide the user viewing

and editing options for vendor specific parameters without any additional knowledge about the vendor specific device features.

14.2 Web GUI functionality

All of the "IODD on Module" features are accessible via the UNITRONIC® ACCESS Web interface.

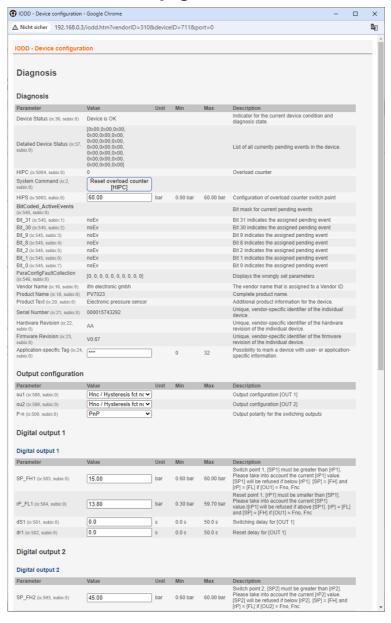
14.2.1 Port Details page

The Port Details Page shows all information about the selected port. In the left column, all port and channel specific information is displayed. If the port is configured as IO-Link and there is an IO-Link Device connected, all IO-Link information for the connected device is displayed in the right column.

IODD buttons

The row called *IODD* provides access to the "IODD on Module" features. The button *UPLOAD* will let the user upload an IODD file into the module, regardless of the original device the IODD has been designed for.

The maximum number of IODDs is limited due to storage space. If there is no more space left for new IODDs, there will be an error message. In this case, navigate to the IODD Management page to delete IODDs which are no longer used.


If there is a matching IODD for the currently connected device already stored in the system, the button *CONFIGURE* is shown in the interface. By clicking this button, the Parameter Page will open to configure the device.

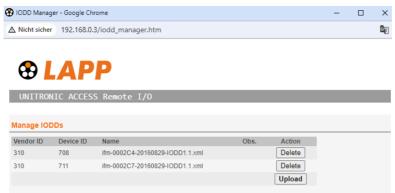
Process data

For every connected IO-Link Device, raw process data for input and output direction (set of bytes) is on display.

If a matching IODD providing information about process data is already stored in the system, this data will also be displayed in a user-friendly format according to the IODD.

14.2.2 Parameters page

The parameters page "IODD – Device configuration" shows all parameters which are provided by the IODD of the device. That means the parameter set is variable and depends on the connected IO-Link Device.


The stored IODD reads the parameter meta data, such as names, units, min/max values, descriptions etc. The values will be obtained directly from the connected device. For that reason it may take several seconds until the page is updated.

If not already saved into the browser, you will be asked for your credentials to continue. A valid user access with Web Interface group membership is needed in order to edit the device parameters. After the registration, enabled values can be changed. Disabled values cannot be changed and may be marked as "read-only" in the IODD. All values are directly written back to the device after any change.

Limitations

- ► Editing parameter values will directly change them inside the connected device. No parameter server action is triggered by that.
- ► There is a maximum size of the IODD in order to be uploaded into the system. This depends on several values, such as file size, parameter count, nesting levels etc.

The IODD Management Page can be accessed via the System page displaying all IODDs that are currently stored in the system. All IODDs

matching connected devices are marked. On the IODD Management page, you can manually delete any IODD in the system.

15 Technical data

The following sections give an overview of the most important functional data needed to operate the device. For further information and detailed technical data, see the respective **Data Sheet** of your required product in the product specific download area on https://lapp.com.

15.1 General

Protection class (Only applies if the connectors are screwed together or if protective caps are used.) ²	IP65 IP67 IP69K		
Ambient temperature (during operation and storage)	MP0840 °C +70 °C (-40 °F +158 °F)		
	PN08IOLA/EIP08IOLA/EC08IOLA/ MTCP08IOLA/CCL08IOLA	-20 °C +60 °C (-4 °F +140 °F)	
Weight	UNITRONIC® ACCESS 60 mm approx. 500 gr. (17.6 oz)		
Ambient moisture	Max. 98% RH (For UL applications: Max. 80% RH)		
Housing material	Die-cast zinc		
Surface finish	Frosted nickel		
Flammability class	UL 94 (IEC 61010)		
Vibration resistance (oscillation) DIN EN 60068-2-6 (2008-11)	15 g / 5-500 Hz		
Shock resistance DIN EN 60068-2-27 (2010-02)	50 g / 11 ms +/- X,Y,Z		
Fastening torques	M4 fixing screws 1 Nm		
	M4 ground connection	1 Nm	
	M12 connector	0.5 Nm	
Permitted cables	Ethernet cables according to IEEE 802.3, min. CAT 5 (shielded) Max. length of 100 m, not routed out of facility (= local network)		

Table 50: General information

² Not under UL investigation.

15.2 CC-Link IE Field Basic protocol

Protocol	CC-Link IE Field Basic
Update cycle	1 ms
Transmission rate	100 Mbit/s, full duplex
Transmission procedure Autonegotiation	100BASE-TX supported
Product type	0x001F IO-Link Master
Product code	MP08IOLA08DIO, 381166717 CCL08IOLA08DIO, 381166716
Supported Ethernet protocols	ICMP ARP HTTP/HTTPS SNMP
Switch functionality	Integrated
CC-Link IE Field Basic interface Connections Autocrossing	2 M12 sockets, 4-pin, D-coded (see pin assignments) 2 M12 Hybrid male/female, 8-pin supported
Electrically isolated Ethernet ports -> FE	2000 V DC

Table 51: CC-Link IE Field Basic protocol

15.3 Power supply of the module electronics/ sensors

Port X03, X04	M12-L-coded Power, connector/socket, 5-pole Pin 1 / Pin 3			
Nominal voltage U _S	24 V DC (SELV/PELV)			
Current U _S	Max. 16 A			
Voltage range	21 30 V DC			
Power consumption of module electronics	Typically 160 mA (+/-20 9	% at U _S nominal vol	tage)	
Power supply interruption	Max. 10 ms			
Voltage ripple U _S	Max. 5 %			
Current consumption sensor system (L+ / Pin 1)	MP08	Port X1 X8 (Pin 1)	max. 4 A per port (at T _{ambient} = 30° C)	
,	PN08IOLA/ EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	Port X1 X8 (Pin 1)	max. 2 A per port (at T _{ambient} = 30° C)	
Voltage level of the sensor power supply	Min. (U _S – 1.5 V)			
Short circuit/overload protection of sensor supply	Yes, per port			
Reverse polarity protection	Yes			
Operational indicator (U _S)	LED green: 18 V (+/- 1 V) < U _S			
(08)	LED red:	U _S < 18 V (+/- 1 V	<i>'</i>)	

Table 52: Information on the power supply of the module electronics/ sensors

15.4 Power supply of the actuators

15.4.1 IO-Link Class A devices (U_L)

Nominal voltage U _L	24 V DC (SELV/PELV)
Voltage range	18 30 V DC
Current U _L	Max. 16 A
Voltage ripple U _L	Max. 5 %
Reverse polarity protection	Yes
Operational indicator (U _L)	LED green: $18 \text{ V (+/- 1 V)} < U_L$ LED red: $U_L < 18 \text{ V (+/- 1 V)}$ or $U_L > 30 \text{ V (+/- 1 V)}$ * if "Report U_L supply voltage fault" is enabled.
Port X03, X04	M12_L-coded Power, connector/socket, 5-pole Pin 2 / Pin 4

Table 53: Information on the power supply of the actuators

15.4.2 IO-Link Class A/B devices (U_{AUX})

Nominal voltage U _{AUX}	24 V DC (SELV/PELV)
Voltage range	18 30 V DC
Current U _{AUX}	Max. 16 A
Voltage ripple U _{AUX}	Max. 5 %
Reverse polarity protection	Yes
Electric isolation $U_S \leftrightarrow U_{AUX}$	500 V
Operational indicator (U _{AUX})	LED green: 18 V (+/- 1 V) < U_{AUX} LED red: U_{AUX} < 18 V (+/- 1 V) or U_{AUX} > 30 V (+/- 1 V) * if "Report U_{AUX} supply voltage fault" is enabled.
Port X03, X04	M12_L-coded Power, connector/socket, 5-pole Pin 2 / Pin 4

Table 54: Information on the power supply of the actuators

15.5 I/O ports Channel A (Pin 4)

MP08	Port X1 X8	Class A	IOL, DI, DO	M12 socket, 5-pin, Pin 4
PN08IOLA/EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	Port X1 X8	Class A	IOL, DI, DO	

Table 55: IO-Link Master ports: Functional overview for Ch. A (Pin 4)

15.5.1 Configured as digital input, Ch. A (Pin 4)

Input connection	MP08 PN08IOLA/EIP08IOLA/EC08IOLA/ MTCP08IOLA/CCL08IOLA		Type 1 as per IEC 61131-2
Nominal input voltage	24 V DC		
Input current	Typically 3 mA		
Channel type	Normally open, p-switching		
Number of digital inputs	MP08 PN08IOLA/EIP08IOLA/ EC08IOLA/MTCP08IOLA/ CCL08IOLA	X1 X8	8
Status indicator	yellow LED		
Diagnostic indicator	red LED per channel		

Table 56: I/O ports Ch. A (Pin 4) configured as digital inputs

15.5.2 Configured as digital output, Ch. A (Pin 4)

Attention: For variant MP08IOLA08DIO, the digital outputs of Channel A is **supplied by the U_L power** when parameterized to "High-Side Switch" mode.

Attention: For variant PN08IOLA08DIO, the digital outputs of Channel A is **supplied by the U**_S **power**.

Output type	normally open, p-switching (parameterized to "High-Side Switch" mode)			
Nominal output voltage per channel				
Signal status "1" Signal status "0"	min. (U _S -1 V) ${f or}$ min. (U _L -1 V) depending on the device variant max. 2 V			
Max. output current per device	MP08 9 A (power supplied via U _L)			
Max. output current per device	PN08IOLA/EIP08IOLA/ EC08IOLA/MTCP08IOLA/ CCL08IOLA	4 A (power supplied via U _S)		
Max. output current per	MP08 (X1 X8)	2 A (power supplied via U _S)		
channel ³	PN08IOLA/EIP08IOLA/ EC08IOLA/MTCP08IOLA/ CCL08IOLA (X1 X8)	0.5 A (power supplied via U _S) 0.25 A for UL applications		
Short-circuit/overload protected	yes/yes			
Behavior in case of short circuit or overload	deactivation with automatic power-on (parameterized)			
Number of digital outputs	MP08 (X1 X8) PN08IOLA/EIP08IOLA/ EC08IOLA/MTCP08IOLA/ CCL08IOLA (X1 X8)	8		
Status indicator	yellow LED per output			
Diagnostic indicator	red LED per channel			

Table 57: I/O ports Ch. A (Pin 4) configured as digital outputs

Max. 2.0 A per channel; for every port pair X1/X2, X3/X4, X5/X6, X7/X8 max. 6.5 A (for **UL applications** max. 5.0 A); for the whole port group X1 .. X8 max. 9.0 A in total (with derating).

15.5.3 Configured as IO-Link port in COM mode, Ch. A

IO-Link Master specification	v1.1.3, IEC 61131-9		
Communication rates	4.8 kbaud (COM 1) 38.4 kbaud (COM 2) 230.4 kbaud (COM 3)		
Line lengths in the IO-Link Device	max. 20 m		
Number of IO-Link ports	MP08 (X1 X8) PN08IOLA/EIP08IOLA/EC08IOLA/ MTCP08IOLA/CCL08IOLA (X1 X8)	8	
Min. IO-Link cycle time	400 μs		

Table 58: Configured as IO-Link port in COM mode

15.6 I/O ports Channel B (Pin 2)

MP08	Port X1 X8	Class A	DI, DO	M12 socket, 5-pin, Pin 2
PN08IOLA/EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	Port X1 X8	Class A	DI	

Table 59: IO-Link Master ports: Functional overview for Ch. B (Pin 2)

15.6.1 Configured as a digital input, Ch. B (Pin 2)

Input connection	MP08 PN08IOLA/EIP08IOLA/EC08IOLA/ MTCP08IOLA/CCL08IOLA		Type 1 as per IEC 61131-2
Nominal input voltage	24 V DC		
Input current	Typically 3 mA		
Channel type	Normally open, p-switching		
Number of digital inputs	MP08	X1 X8	8
Number of digital inputs	PN08IOLA/EIP08IOLA/ EC08IOLA/MTCP08IOLA/ CCL08IOLA	X1 X8	8
Status indicator	white LED		
Diagnostic indicator	red LED per channel		

Table 60: I/O ports Ch. B (Pin 2) configured as digital inputs

15.6.2 Configured as a digital output, Ch. B (Pin 2)

Attention: For variant MP08IOLA08DIO, the digital outputs of Channel B is **supplied by the U_L power**.

Attention: For variant PN08IOLA08DIO, the digital outputs of Channel B is **supplied by the U_S power**.

Output type	normally open, p-switching			
Nominal output voltage per channel Signal status "1" Signal status "0"	min. (U $_S$ -1 V) or min. (U $_L$ -1 V) or min. (U $_{AUX}$ -1 V) depending on the device variant max. 2 V			
Max. output current per device	MP08 9 A (power supplied via U _L)			
Max. output current per device	PN08IOLA/ EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	4 A (power supplied via U _S)		
Max. output current per channel	MP08	2 A (power supplied via U _S)		
Max. output current per channel 4	PN08IOLA/ EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	0 A (no outputs on Ch. B)		
Short-circuit/overload protected	yes/yes			
Behavior in case of short circuit or overload	deactivation with automatic power-on (parameterized)			
Number of digital outputs	MP08 8			
Number of digital outputs	PN08IOLA/ EIP08IOLA/ EC08IOLA/ MTCP08IOLA/ CCL08IOLA	_		
Status indicator	white LED per output			
Diagnostic indicator	red LED per channel			

Table 61: I/O ports Ch. B (Pin 2) configured as digital outputs

For Class A devices: Max. 2.0 A per channel; for every port pair X1/X2, X3/X4, X5/X6, X7/X8 max. 6.5 A (for **UL applications** max. 5.0 A); for the whole port group X1 .. X8 max. 9.0 A in total (with derating).

15.7 LEDs

LED	Color	Description	
U _L /U _{AUX}	Green	Auxiliary sensor/actuator voltage OK	
		18 V (+/- 1 V) < U _L /U _{AUX} < 30 V (+/- 1 V)	
	Red [*]	Auxiliary sensor/actuator voltage LOW	
		U _L /U _{AUX} < 18 V (+/- 1 V) or U _L /U _{AUX} > 30 V (+/- 1 V)	
		* if "Report U _L /U _{AUX} supply voltage fault" is enabled.	
	OFF	None of the above conditions.	
U _S	Green	System/sensor voltage OK	
		18 V (+/- 1 V) < U _S < 30 V (+/- 1 V)	
	Red	System/sensor voltage LOW	
		$U_{\rm S}$ < 18 V (+/- 1 V) or $U_{\rm S}$ > 30 V (+/- 1 V)	
	Red flashing	Device performs a factory reset (position of rotary encoding switches: 9-7-9)	
	OFF	None of the above conditions.	
X1 X8 A	Green	IO-Link COM Mode: IO-Link communication exists.	
	Green flashing	IO-Link COM Mode: No IO-Link communication.	
	Yellow	Standard-I/O Mode: Status of digital input or	
		output on C/Q (pin 4) line "on".	
	OFF	None of the above conditions	
X1 X8 B	White	Status of digital input or digital output on pin 2 line "on".	
	Red	Short circuit on pin 4 and pin 2 line. / All modes: Overload or short circuit on L+ (pin 1) line / communication error	
	OFF	None of the above conditions.	
P1 Lnk/Act P2 Lnk/Act	Green	Ethernet connection to another subscriber exists. Link detected.	
	Yellow flashing	Data exchange with another subscriber.	
	OFF	No connection to another subscriber. No link, no data exchange.	

LED	Color		Description	
BF	Red		Bus fault. No configuration, no or slow physical connection.	
	Red flashing at 2 Hz		Link exists but no communication link to the CC-Link IE controller.	
	OFF		CC-Link IE controller has established an active connection to the device.	
DIA	Red		CC-Link IE module diagnostic alarm active.	
	Red flashing at 1 Hz		Watchdog time-out; fail safe mode is active.	
	Red flashing at 2 Hz, 3 sec		DCP signal service is initiated via the bus.	
	Red double flash		Firmware update	
	OFF		None of the above conditions.	
MS	Green		Device is ready for operation.	
	Green flashing		Device is ready but not configured yet.	
	Red		Serious error that cannot be resolved.	
	Red flashing		Minor error that can be resolved Example: An incorrect or contradictory configuration is classified as a minor error.	
	Flashing alternately:		The device is performing a self-test.	
	Red	Green		
	OFF		The device is switched off.	

LED	Color	Description	
NS	Green	Connected: The device has at least one connection.	
	Green flashing	No connection: The device has no connection. IP address exists.	
	Red	Duplicate IP address: The device has detected that the assigned IP address is already being used by another device.	
	Red flashing	Connection has exceeded time limit or connection interrupted.	
	Flashing alternately	The device is performing a self-test.	
	Red Gr	en en	
	OFF	The device is switched off or has not been assigned an IP address.	

Table 62: Information on the LED colors

15.8 Data transfer times

The following tables give an overview of the internal data transfer times of the UNITRONIC® ACCESS IO-Link Master with a connected IO-Link Device as digital I/O extension (LAPP article IOL08DIO08DIO 16DIO Hub with a minimum cycle time of 1 ms).

There are three measured data direction values for each use case:

- ▶ PLC to DO: Transfer of a changed PLC output data to IO-Link Device digital output.
- ▶ DI to PLC: Transfer of a changed digital input signal on IO-Link Device to PLC.
- Round-trip time (RTT): Transfer of a changed PLC output data to IO-Link Device digital output. The digital output is connected to an IO-Link Device digital input. Transfer of the changed digital input signal on IO-Link Device to PLC. RTT = [PLC to DO] + [DI to PLC].

The measured values are taken from the ethernet data transmission line. The values are therefore without PLC processing times and PLC cycle time.

The configurable digital input filter value on IOL08DIO08DIO was set to "off" (0 ms).

For calculation of user specific data transfer and round-trip times of possible input filters, PLC processing and cycles times must be taken into calculation.

The measured values are valid for a maximum of 48 bytes of IO-Link data for the IO-Link Master in each direction (Input/Output).

Use case 1:

IO-Link Master configuration with enabled Web interface and *disabled* IIoT protocols

Data direction	Data transfer time in ms			
	Minimum	Average	Maximum	
PLC to DO	3.7	6.0	7.7	
DI to PLC	1.1	3.0	4.3	
RTT	6.1	8.9	11.1	

Use case 2:

IO-Link Master configuration with enabled Web interface and *enabled* IIoT protocols

Data direction	Data transfer time in ms			
	Minimum	Average	Maximum	
PLC to DO	7.7	10.0	13.4	
DI to PLC	3.3	4.4	5.6	
RTT	12.1	14.3	17.0	

16 Accessories

In order to get access to various types of accessories, please visit our Web page:

https://www.lapp.com